
PREMIUM PARTNER

Kim Anthonisen
Team Lead, Senior Consultant and

Zabbix Certified Expert

NORDIC Excellence

Powerhouse
of databases

Locations

▪ Skovlunde

▪ Aarhus

▪ Stockholm

▪ Prague

Implementing
TimescaleDB without

downtime

How we implemented TimescaleDB partitioning and compression on a
large Zabbix installation without downtime

Before we
start, please
vote for this

ZBXNEXT:

Our Zabbix

Monitoring our customers databases, servers and applications
We are the designated Database Administrators (DBA’s)

Zabbix is our tool

Internally
• Zabbix as our own internal monitoring tool

Zabbix as a Service (MSP)
We offer Zabbix to our customers which they use as their own

Zabbix as a Service

Principles:

We facilitate the Zabbix installation – we administrate users, hostgroups etc,
we install and maintain the proxies, but the customers installs the agents,
and sets up their own monitoring.

Typically, we help setting up the monitoring together with the customer, and
after this, the customer maintains the monitoring them selves, with support
from us.

Zabbix Support subscriptions (MSP) are part of this, Miracle42 as 1st level
support and Zabbix Support as 2nd level.

Our Zabbix: System information

Our Zabbix: Dashboards

Our Zabbix: Dashboards

Our Zabbix: Dashboards

Our Ambition

Our ambition is to offer our customers
a state-of-the-art Zabbix with as close

to 100 percent uptime as possible.

Downtime ?

Downtime is difficult for us, as we must agree with
many customers about a service window.

Some customers can afford a service window in the
daytime when they use the systems, while others
prefer downtime in out of office hours.

Downtime ?

Conclusion: downtime is not an option!

M42
Zabbix Firewall + loadbalancer

Customers firewall

Firewall

Proxies
@customers

Customers firewall

Internet

WEB

Servers

IP#2IP#1
VIP#1

VIP#2

Postgresql
TimescaleDB

Why TimescaleDB ?

Our Zabbix database has 4 Tb of data and is growing.

House keeper constantly running, cannot keep up.

Partitioning will remove the housekeepers work of deleting data, as old
partitions can be dropped instead.

Compression will reduce storage demand from around 4 Tb to a few
hundred Gb.

The problem

”The migration of existing history and trend data may take a
lot of time. Zabbix server and frontend must be down for the
period of migration.”

https://www.zabbix.com/documentation/6.0/en/manual/appendix/install/timescaledb

https://www.zabbix.com/documentation/6.0/en/manual/appendix/install/timescaledb

Zabbix - TimescaleDB

https://www.zabbix.com/documentation/6.0/en/manual/appendix/install/timescaledb

Run /usr/share/zabbix-sql-scripts/postgresql/timescaledb.sql, but without the

”Perform create_hypertable” and ”UPDATE config” lines, as we will do this manually.

PostgreSQL version 14.4 is valid

TimescaleDB extension is detected

TimescaleDB version 2.8.0 is valid

TimescaleDB is configured successfully

https://www.zabbix.com/documentation/6.0/en/manual/appendix/install/timescaledb

Migrating to TimescaleDB

Concept
1. Create new table

2. Register new table with TimescaleDB

3. Create trigger on current table, to populate new table

4. Load data from current table to new table

5. Switch tables

Migrating to TimescaleDB

history a b c d e f g h i j k l m n o p q r

Time

Migrating to TimescaleDB

history a b c d e f g h i j k l m n o p q r s t

Time

Migrating to TimescaleDB

SQL> CREATE TABLE history_new (
LIKE history
INCLUDING DEFAULTS
INCLUDING CONSTRAINTS
INCLUDING INDEXES
);

a b c d e f g h i j k l m n o p q r s thistory

history_new

Migrating to TimescaleDB

Concept
1. Create new table

2. Register new table with TimescaleDB

3. Create trigger on current table, to populate new table

4. Load data from current table to new table

5. Switch tables

Migrating to TimescaleDB

a b c d e f g h i j k l m n o p q r s thistory

history_new

SQL> select create_hypertable

('history_new', 'clock', chunk_time_interval => 86400, migrate_data => true);

Migrating to TimescaleDB

Concept
1. Create new table

2. Register new table with TimescaleDB

3. Create trigger on current table, to populate new table

4. Load data from current table to new table

5. Switch tables

Migrating to TimescaleDB
SQL> create or replace function insert_history_m42()
...
begin
 insert into history_new
 select * from inserted_rows;
...

SQL> create trigger history_ins_trg_m42
after insert on history
...
execute function insert_history_m42();

a b c d e f g h i j k l m n o p q r s t

trigger

history

history_new

Migrating to TimescaleDB

a b c d e f g h i j k l m n o p q r s t u

u

trigger

history

history_new

New data arrives
in both tables

Migrating to TimescaleDB

Concept
1. Create new table

2. Register new table with TimescaleDB

3. Create trigger on current table, to populate new table

4. Load data from current table to new table

5. Switch tables

Migrating to TimescaleDB

SQL>
 for r in select itemid...

loop
insert into history_new
select * from history as t where...

end loop;

a b c d e f g h i j k l m n o p q r s t u

a b u

trigger

history

history_new

Load of old data
to history_new

Migrating to TimescaleDB

a b c d e f g h i j k l m n o p q r s t u v

a b c d e f u v

trigger

history

history_new

Migrating to TimescaleDB

a b c d e f g h i j k l m n o p q r s t u v

a b c d e f g h i u v

trigger

history

history_new

Migrating to TimescaleDB

a b c d e f g h i j k l m n o p q r s t u v w

a b c d e f g h i j k l m n u v w

trigger

history

history_new

Migrating to TimescaleDB

a b c d e f g h i j k l m n o p q r s t u v w

a b c d e f g h i j k l m n o p q r s t u v w

trigger

history

history_new

Migrating to TimescaleDB

Concept
1. Create new table

2. Register new table with TimescaleDB

3. Create trigger on current table, to populate new table

4. Load data from current table to new table

5. Switch tables

Migrating to TimescaleDB

SQL> alter table history rename to history_old;

SQL> alter table history_new rename to history;

SQL> commit;

a b c d e f g h i j k l m n o p q r s t u v w

a b c d e f g h i j k l m n o p q r s t u v w

trigger

history_old

history

Migrating to TimescaleDB

SQL> drop table history_old;

SQL> commit;

history a b c d e f g h i j k l m n o p q r s t u v w

5. Switch tables

Warning: Be careful with database locks (!)

5. Switch tables

Warning: Be careful with database locks (!)

If House keeper is running, or if Zabbix is
loading a large amount of data, the rename
commands can hang for some time,
resulting in more locks in the database and
Zabbix unable to get new data.

Result

Surprisingly, the size of the database dropped from around 4 TB to 550
GB soon after the switch to TimescaleDB had completed (!)

Result

The reason for this significant drop in size was not compression
(which has not yet been enabled), but that old data was dropped,
when their partitions was dropped.

The cause for this was, that the housekeeper had not been able to keep
up with the data coming in, and for this reason, our database had
grown a lot more than it was supposed to.

Result
Before

After

Lessons learned

1) Although the Housekeeper process does not run all the time,
 it can be trailing behind in the work it should do.

2) Make sure You have plenty of space for archive logs.
 - A lot of archive will be generated.

3) The load can run for quite some time.
 - Our history_uint was completed over the course of 2 weeks (!)

4) Be careful with locks when switching tables

Compression

Next, we enable the compression, which is performed by the
housekeeper.

First step is to run the two update statements from the file
/usr/share/zabbix-sql-scripts/postgresql/timescaledb.sql

SQL> UPDATE config SET
db_extension='timescaledb’,
hk_history_global=1,
hk_trends_global=1;

SQL> UPDATE config SET
compression_status=1,
compress_older='7d’;

SQL> commit;

Compression

Once the data has been loaded and the tables switched, we should
set global housekeeper options, overriding both item and trends
storage period.

This will effectively disable the
DELETION of data, and make
Housekeeper DROP partitions
instead.

Compression

For some reason, Zabbix might not detect and verify the TimescaleDB
compression support, and for this reason, no compression is taking
place.

Compression

Found that someone else has faced same issue previously

https://support.zabbix.com/browse/ZBX-21420

Solution seems to be restart Zabbix (my interpretation)

https://support.zabbix.com/browse/ZBX-21420

Compression

The issue seems to be with the logic by which the Zabbix server
decides, if it can compress the partitions.

For some reason, Zabbix really did not want to compress our partitions.

Compression

I downloaded the Zabbix source code, found the place where
compression of chunks are set, and backtraced the code to
housekeeper’s main loop.

Outline of the logic:

housekeeper main loop (housekeeper.c)
└ hk_history_compression_init/update (history_compress.c)
 └ hk_history_enable_compression (history_compress.c)
 └ hk_check_table_segmentation (history_compress.c)

Compression

Running house keeper with debug level = 5, revealed where the issue
should be found

zabbix_server -R log_level_increase=452428
zabbix_server -R log_level_increase=452428

zabbix_server -R housekeeper_execute

Compression

/var/log/zabbix/zabbix_server.log:

452428:… executing housekeeper
…
452428:… In DBconnect() flag:0
…
452428:… End of DBconnect():0
…
452428:… In hk_history_compression_update()
452428:… End of hk_history_compression_update()

Note: the hk_history_enable_compression sub process was NOT executed!

Compression

With inspiration from the source code, I disabled compression

SQL> update config set compression_status=0;

SQL> commit;

I verified in the front end that compression was disabled and restarted
the Zabbix server. And then switched on compression again:

SQL> update config set compression_status=1;

SQL> commit;

Compression

846073:… executing housekeeper
…
846073:… In hk_history_enable_compression()
…
846073:… In hk_check_table_segmentation(): table: history
…
846073:… query [txnlev:0] [alter table history set
(timescaledb.compress,timescaledb.compress_segmentby='itemid',tim
escaledb.compress_orderby='clock,ns’)]
…
(repeats for all history and trends tables)

Compression

Succes !
Database was compressed from 681 GB to 130 GB (81% reduction) !!!

Compression

(only) a small increase
in cpu usage (1-2 %)

Compression

I/O has dropped significantly (by a factor of 3-4)

Conclusion

• Partitioning of history and trends removes a large load
from the housekeeper

• Compression reduces database size a lot, enabling a much
longer retention period and reducing I/O considerately,
without increasing cpu usage noticeably

• Both partitioning and compression can be implemented
without downtime for Zabbix

Proxy HA and load balancing

Zabbix-to-Zabbix project

Internet

M42 Zabbix: Reporting project

DWH

API
Reports

M42 Reporting server

Thank You for Your time!

Questions ?

Feel free to contact me at

zabbix@miracle42.dk

mailto:zabbix@miracle42.dk

	Slide 1
	Slide 2
	Slide 3: Implementing TimescaleDB without downtime
	Slide 4: Before we start, please vote for this ZBXNEXT:
	Slide 5: Our Zabbix
	Slide 6: Zabbix as a Service
	Slide 7: Our Zabbix: System information
	Slide 8: Our Zabbix: Dashboards
	Slide 9: Our Zabbix: Dashboards
	Slide 10: Our Zabbix: Dashboards
	Slide 11: Our Ambition
	Slide 12: Downtime ?
	Slide 13: Downtime ?
	Slide 14: M42 Zabbix
	Slide 15: Why TimescaleDB ?
	Slide 16: The problem
	Slide 17: Zabbix - TimescaleDB
	Slide 18: Migrating to TimescaleDB
	Slide 19: Migrating to TimescaleDB
	Slide 20: Migrating to TimescaleDB
	Slide 21: Migrating to TimescaleDB
	Slide 22: Migrating to TimescaleDB
	Slide 23: Migrating to TimescaleDB
	Slide 24: Migrating to TimescaleDB
	Slide 25: Migrating to TimescaleDB
	Slide 26: Migrating to TimescaleDB
	Slide 27: Migrating to TimescaleDB
	Slide 28: Migrating to TimescaleDB
	Slide 29: Migrating to TimescaleDB
	Slide 30: Migrating to TimescaleDB
	Slide 31: Migrating to TimescaleDB
	Slide 32: Migrating to TimescaleDB
	Slide 33: Migrating to TimescaleDB
	Slide 34: Migrating to TimescaleDB
	Slide 35: Migrating to TimescaleDB
	Slide 36: 5. Switch tables
	Slide 37: 5. Switch tables
	Slide 38: Result
	Slide 39: Result
	Slide 40: Result
	Slide 41: Lessons learned
	Slide 42: Compression
	Slide 43: Compression
	Slide 44: Compression
	Slide 45: Compression
	Slide 46: Compression
	Slide 47: Compression
	Slide 48: Compression
	Slide 49: Compression
	Slide 50: Compression
	Slide 51: Compression
	Slide 52: Compression
	Slide 53: Compression
	Slide 54: Compression
	Slide 55: Conclusion
	Slide 56: Proxy HA and load balancing
	Slide 57: Zabbix-to-Zabbix project
	Slide 58: M42 Zabbix: Reporting project
	Slide 59: Thank You for Your time!

