Logs go LLD

Giedrius Stasiulionis

Me

The one who loves monitoring, programming and automation

Logs

Depending on your environment, logs might be one of the richest data
sources for monitoring

Applications, webservers, OS, periodical processes... All of them log
something

/abbix & logs out-of-the-box

log|]
log.count|]

Perfect items for many use cases!

/abbix & logs out-of-the-box

log|]
log.count|]

But is this enough?

/abbix & logs out-of-the-box

log|]
log.count|]

For many use cases (or with lots of manual work) — yes, that is enough

/abbix & logs out-of-the-box

log|]
log.count|]

For more complex needs — no, that is not enough

Solution?

Logs go LLD!

Concept: high level overview

LLD relies on several ideas

 KISS (UserParameter + bash script)

* regexps \S+ are your friends!

 capturing groups (\S+) are your best friends!
* Perl regexp flavor — to be most flexible

Concept: the amount of data

Since discovery is typically being run way less frequently than data
collection, it would be too painful (performance wise) to analyze full

slices of logs between each discovery run

Imagine log file which is updated with ~100k lines per minute. If you
would run your discovery once an hour for full data window between

two runs, that would be 6 million lines to process. Depending on
particular regexp, it might take too long

Concept

So using this approach relies on empirical knowledge about your logs,
finding the best balance for given log file on:

* the amount of data (lines) being processed
* frequency of running the script
* best regexps for specific case

Implementation

=log.discovery[*],/etc/zabbix/zabbix_agentd.d/zbx_scripts/log_discovery.sh '$1' '$2'

I$3I I$4I

log_file="${1}"
Llines="${2}"
entity_key="${3}"
pattern="${4}"

Implementation: UnsafeUserParameters

Implementation: essence

LN
while read line; do

result=" $(get_json_body_line)"

done <<< "$(tail - : “ | grep -Po " “ | perl -ne 'while ($_ =~

/" "t/g) { print join(" ", map { $_ // "" } ($1, $2, $3, $4, $5, $6, $7, $8, $9)), "\n"; }'
sort -u)"

Example no. 1

You are interested in counting all requests that appear in your
webserver log, grouped by HTTP status codes

LogFormat "%h %1 %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\" \"%{Host}i%U%q\" %D" combined

- - [13/Jul/ :20:54: -+] "GET /sk HTTP/1.1" 302 "-" "Mozilla/5.0 (Windows NT 10.0;
Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36" "stelmuze.lt/sk"

Example no. 1: configuration

o0
[root@559953 zbx_scripts]# ./log_discovery.sh /var/log/httpd/access_log CODE "HTTP\/\d\.\d.\s(\d{3})"
| jg "."
[
"{#CODE}": "200"
"{#CODE}": "301"
"{#CODE}": "302"

"{#CODE}": "304"

"{#CODE}": "404"

]
[root@559953 zbx_scripts]#

Example no. 1: configuration

Mame Discovery HTTP status codes

Type Zabbix agent (active)

Key log discovery[{3ACCESS_LOGY, 1000, CODE,"HTTPWd\ \d \s{\d{3})"]

Update interval 10m

Count of CODE} in {SACCESS_LOG} (per 1 minute)
Zabbix agent (active)
Key log.countf{3ACCESS_LOG} HTTPWd\ \d \s{#CODE},, 10000, skip]
Type of information Numeric (unsigned)
Units

Update interval

Example no. 1: result

- other - (5 ltems)
Count of 200 in ivarflog/ttpdfaccess_log (per 1 minute)
Count of 301 in ivarflog/ittpdfaccess_log (per 1 minute)

Count of 302 in ivarflog/ttpdfaccess_log (per 1 minute)

Count of 304 in ivarflog/tipd/ace log (per 1 minute)

Count of 404 in ivarflog/ittpdfaccess_log (per 1 minute)

2023-07-11 18:32:39

2023-07-11 18:32:39

2023-07-11 18:32:39

2023-07-11 18:32:39

2023-07-11 18:32:39

Example no. 2

Same log, you want durations of all requests based on HTTP method,
HTTP status code and specific domain

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\" \"%{Host}i%U%q\" %D" combined

- - [13/Jul/ :20:54: -+] "GET /sk HTTP/1.1" 302 "-" "Mozilla/5.0 (Windows NT 10.0;
Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36" "stelmuze.lt/sk"

zbx_scripts]# ./log_discovery.sh /var/log/httpd/access_log
| ia .

"{#COMPONENT_1}":
"{#COMPONENT_2}":
"{#COMPONENT_3}":

"{#COMPONENT_1}":
"{#COMPONENT_2}":
"{#COMPONENT_3}":

"{#COMPONENT_1}":
"{#COMPONENT_2}":
"{#COMPONENT_3}":

Example no. 2

IIGETI\ ,
II2@@I\ ,

Mk kKKK K KAkxkxx 1 t"

IIGETI\ ,
II2@@I\ ,

Phkkkkkkxkxk |1t"

IfPOSTII ,
n4@4|\ ,

II**** . 'Ltll

(\S+2)\/.*\

COMPONENT

Example no. 2: configuration

log.discovery[{ }s , COMPONENT , " :\d{2}\s.*]\s. (\S+)\s\/.*\sHTTP\/\d\.\d.\s(\d{3})\s.*\"
(\S+?)\/.*\"\s(?:\d+)$"]

log[{$ACCESS_LOG}, " :\d{2}\s.*]\s.{#COMPONENT_1}\s\/.*\sHTTP\/\d\.\d.\s{#COMPONENT_2}\s.*\"
{#COMPONENT_3}\/.*\"\s(\d+)$",,1000,skip,\1]

Example no. 2: configuration

Preprocessing steps

1: Custom multiplier

Example no. 2: configuration

Don’t forget about further possible data transformations!

Filters

Filters

A {#COMPONENT_1} atches ~ | GET|POST

Example no. 2: configuration

Example no. 2: result

Request duration - GET - 200 -

logivarflog/ttpdiaccess_log, " \d{2Ns_*\

Request duration - GET - 200 -

log[ivarflog/ttpdfaccesslog, " \d{2Ws_*]\

Request duration - GET - 200 -

log[Avarflog/ttpdiaccess_log,"\d{2)s. T\

Request duration - GET - 200 -

log[ivarflog/tipdiaccess_log, " \d{2)s. T\

Request duration - GET - 200 - 1
log[ivarflog/httpdiaccess_log, " \d{2s. T\

Request duration - GET - 200 -

log[ivarflog/ttpdiaccess_log, " \d{2Ws_ "]\

Request duration - GET - 200 -

log[ivarflog/htipdiaccess_log, " \d{2}s.*]\

Request duration - GET - 200 -

log[ivarflog/ttpdiaccess_log," \d{2}s.*T\

Request duration - GET - 200 -

log[Avarflog/tipdiaccess_log, " \d{2)s.*T\

Request duration - GET - 200 -

log[ivarflog/ttpdiaccess_log," \d{2}s_*]\

Request duration - GET - 301 -

log[varflog/ttpd/access_log,"\Wdf2)s

Request duration - GET - 301 -

log[Avarflog/tipdiaccess_log, " \d{2)s.*T\

Zabbix agent (active)

Fabbix agent (active)

Zabbix agent (active)

Zabbix agent (active)

Fabbix agent (active)

Zabbix agent (active)

Zabbix agent (active)

Zabbix agent (active)

Zabbix agent (active)

Fabbix agent (active)

Zabbix agent (active)

Zabbix agent (active)

2023-07-17 11:23:46

20230717 11:18:50

20230717 11:18:56

20230717 111917

20230717 11:24:27

2023-07-17 11:15:06

2331 554 ms

11.105 ms

13.083 ms

0.239 ms

184 579 ms

+4 749 ms

+).008 ms

Example no. 2: result

Edit widget
600 ms

500 ms

300 ms

200 m=

100 ms § x

> B . kL L e T

¥o Woagme o e

S Y

717 2110 21:2 TAT 213 717 21:38 TAT 2144 2 TAT 21:58

Request duration - * - 2* X

Select Request duration - * - 2* %

Base colour 00FFO0 Missing data
Draw i i Y-axis

Widih Time shift

Point size Aggregation function
Transparency Aggregation interval

Fill Agoregaie

. Zabbix server Reguest duration - *- 3* %
Zabbix server x Request duration - * - 4* x

Zabbix server % Request duration - * - 5* %

Explaining the pipe logic

We create discovery json based on this:

"$(tatl - ! “ | grep -Po " “ | perl -ne 'while ($_ =~ /"'"
join(" ", map { $_ /7 "" } ($1, $2, $3, $4, $5, $6, $7, $8, $9)), "\n"; }' | sort -u)"

Explaining the pipe logic: first step

First of all, you tail desired number of lines from your log file:

"$(tail -${lines} "${log_file}" | grep -Po " " | perl -ne 'while ($_ =~ /'"
join(" ", map { $_ 7/ "" } (%1, $2, $3, $4, $5, $6, $7, $8, $9)), "\n"; }' | sort -u)"

Explaining the pipe logic: second step

Next, simplify things for further processing by grepping only pattern
matching ones:

"$(tail - " “ | grep -Po "${pattern}" | perl -ne 'while ($_ =~ /"'"
join(™ ", map { $_ // "" } ($1, $2, $3, $4, $5, $6, $7, $8, $9)), "\n"; }' | sort -u)"

Explaining the pipe logic: third step

Most important step — print only what is matched by capturing groups:

"$(tall - " " | grep -Po " " | perl -ne 'while ($_ =~ /'"${pattern}"'/g) { print
join(" ", map { $_ // "" } ($1, $2, $3, $4, $5, $6, $7, $8, $9)), "\n"; }' | sort -u)"

Explaining the pipe logic: fourth step

Final step — make sets of caught entities unique:

"$(taill - ! " | grep -Po " " | perl -ne 'while ($_ =~ /'"
join(" ", map { $_ // "" } ($1, $2, $3, $4, $5, $6, $7, $8, $9)), "\n"; }' | sort -u)"

Explaining the pipe logic

So in this pipeline, line is transformed from:

- - [13/Jul/ :20:54: +] "GET /sk HTTP/1.1" 302 "-" "Mozilla/5.0 (Windows NT 10.0;
Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36" "stelmuze.lt/sk"

Into just:

GET 302 stelmuze.lt

Explaining the pipe logic
This transformation ensures the speed

Anything highly repetitive in your slice of data (like HTTP 200 for some
domain) but having something dynamic and different in between of
capturing groups (like user agent in my example) doesn’t matter at all!

What matters is only the output of capturing groups!

Explaining the pipe logic

| have 44184 “unique” lines after initial "grep -Po", since | left time in
the beginning and user agent is in between, all for the sake of
demonstration:

[root@ zbx_scripts]# grep -Po ":\d{2}\s.*]\s.(\S+)\s\/.*\sHTTP\/\d\.\d.\s(\d{3})\s.*\"

(\S+?)\/.*\"\s(?:\d+)$" /var/log/httpd/access_log | sort | unig | wc -1

At this ("grep -Po") point, those “unique” lines will look like:

Explaining the pipe logic

After printing just needed data (output of capturing groups) and sorting
unigue entries from it, we get the true uniqueness we want — just 68
sets of data:

[root@559953 zbx_scripts]# ./log_discovery.sh /var/log/httpd/access_log COMPONENT ":\d{2}.*]\s.

(\S+)\s\/ . *\sHTTP\/\d\.\d.\s(\d{3})\s.*\"(\S+?)\/.*\"\s(?:\d+)$" | jq '. | length’

Explaining the pipe logic

And all of this is done in just around a second!

[root@559953 zbx_scripts]# time ./log_discovery.sh /var/log/httpd/access_log COMPONENT ":\d{2}.*]\s.
(\S+)\s\/.*\sHTTP\/\d\.\d.\s(\d{3})\s. *\"(\S+?)\/.*\"\s(?:\d+)$" | jq '. | length’

68

real Om@.937s
user Oml.245s
Sys OmO.081s

Customizing this custom LLD

Given idea / LLD script can be used “as is” but it can be customized
further for specific needs or use cases

What if...

What if out of discovered entities we don’t need actual matches, but
rather we want to group it all somehow...

For instance, what if in previous example we wouldn’t need each and
every HTTP status code, but we would like to have only 2XX and “the
rest”, at the same time, two other capturing groups should give all
possible matches?

Modified version

Additional parameter will solve this and similar tasks. That parameter
will have some static or regexp alternatives for each capturing group
(or none if actual matches are needed), as in our example:

o0
;2\d{2}| ["2]\d{2};

Modified version: result

[root@ zbx_scripts]# ./log_discovery_groups /var/log/httpd/access_log COMPONENT
"INA{2F\s. ¥]\s. (\S+)\s\/ . *\sHTTP\/\d\ . \d. \s(\d{3})\s. *\"(\S+?)\/.*\"\s(?2:\d+)$" ";2\d{2}|["2]\d{2};" |]q

[

"{#COMPONENT_1}": "GET",
"{#COMPONENT_2}": "2\\d{2}",
"{#COMPONENT_3}": "kdkkskskdkk skdkdxx Tt"

"{#COMPONENT_1}": "GET",
"{#COMPONENT_2}": "[~2]\\d{2}",
"{#COMPONENT_3}": "kdkkdkdkdkk sdkdxx Tt"

"{#COMPONENT_1}": "POST",
"{#COMPONENT_2}": "2\\d{2}",
"{#COMPONENT_3}": "kdkdkdkkdkdkx 1"

Modified version: result

Zabbix server: ltem values

i max
(per 1 minute) [avg] 0 2. 21
og (per 1 minute) [avg] c) 8

https://github.com/blnaryl/zabbix

»

https://github.com/b1nary1/zabbix

Thanks!

	Slide 1: Logs go LLD
	Slide 2: Me
	Slide 3: Logs
	Slide 4: Zabbix & logs out-of-the-box
	Slide 5: Zabbix & logs out-of-the-box
	Slide 6: Zabbix & logs out-of-the-box
	Slide 7: Zabbix & logs out-of-the-box
	Slide 8: Solution?
	Slide 9: Concept: high level overview
	Slide 10: Concept: the amount of data
	Slide 11: Concept
	Slide 12: Implementation
	Slide 13: Implementation: UnsafeUserParameters
	Slide 14: Implementation: essence
	Slide 15: Example no. 1
	Slide 16: Example no. 1: configuration
	Slide 17: Example no. 1: configuration
	Slide 18: Example no. 1: result
	Slide 19: Example no. 2
	Slide 20: Example no. 2
	Slide 21: Example no. 2: configuration
	Slide 22: Example no. 2: configuration
	Slide 23: Example no. 2: configuration
	Slide 24: Example no. 2: configuration
	Slide 25: Example no. 2: result
	Slide 26: Example no. 2: result
	Slide 27: Explaining the pipe logic
	Slide 28: Explaining the pipe logic: first step
	Slide 29: Explaining the pipe logic: second step
	Slide 30: Explaining the pipe logic: third step
	Slide 31: Explaining the pipe logic: fourth step
	Slide 32: Explaining the pipe logic
	Slide 33: Explaining the pipe logic
	Slide 34: Explaining the pipe logic
	Slide 35: Explaining the pipe logic
	Slide 36: Explaining the pipe logic
	Slide 37: Customizing this custom LLD
	Slide 38: What if…
	Slide 39: Modified version
	Slide 40: Modified version: result
	Slide 41: Modified version: result
	Slide 42
	Slide 43: Thanks!

