
Logs go LLD

Giedrius Stasiulionis



Me

The one who loves monitoring, programming and automation



Logs

Depending on your environment, logs might be one of the richest data 
sources for monitoring

Applications, webservers, OS, periodical processes… All of them log 
something



Zabbix & logs out-of-the-box

log[]

log.count[]

Perfect items for many use cases!



Zabbix & logs out-of-the-box

log[]

log.count[]

But is this enough?



Zabbix & logs out-of-the-box

log[]

log.count[]

For many use cases (or with lots of manual work) – yes, that is enough



Zabbix & logs out-of-the-box

log[]

log.count[]

For more complex needs – no, that is not enough



Solution?

Logs go LLD!



Concept: high level overview

LLD relies on several ideas

• KISS (UserParameter + bash script)

• regexps \S+ are your friends! 

• capturing groups (\S+) are your best friends!

• Perl regexp flavor – to be most flexible



Concept: the amount of data

Since discovery is typically being run way less frequently than data 
collection, it would be too painful (performance wise) to analyze full 
slices of logs between each discovery run

Imagine log file which is updated with ~100k lines per minute. If you 
would run your discovery once an hour for full data window between 
two runs, that would be 6 million lines to process. Depending on 
particular regexp, it might take too long



Concept

So using this approach relies on empirical knowledge about your logs, 
finding the best balance for given log file on:

• the amount of data (lines) being processed

• frequency of running the script

• best regexps for specific case



Implementation



Implementation: UnsafeUserParameters



Implementation: essence



Example no. 1

You are interested in counting all requests that appear in your 
webserver log, grouped by HTTP status codes



Example no. 1: configuration



Example no. 1: configuration



Example no. 1: result



Example no. 2

Same log, you want durations of all requests based on HTTP method, 
HTTP status code and specific domain



Example no. 2



Example no. 2: configuration



Example no. 2: configuration



Example no. 2: configuration

Don’t forget about further possible data transformations!



Example no. 2: configuration



Example no. 2: result



Example no. 2: result



Explaining the pipe logic

We create discovery json based on this:



Explaining the pipe logic: first step

First of all, you tail desired number of lines from your log file:



Explaining the pipe logic: second step

Next, simplify things for further processing by grepping only pattern 
matching ones:



Explaining the pipe logic: third step

Most important step – print only what is matched by capturing groups:



Explaining the pipe logic: fourth step

Final step – make sets of caught entities unique:



Explaining the pipe logic

into just:

So in this pipeline, line is transformed from:



Explaining the pipe logic

This transformation ensures the speed

Anything highly repetitive in your slice of data (like HTTP 200 for some 
domain) but having something dynamic and different in between of 
capturing groups (like user agent in my example) doesn’t matter at all!

What matters is only the output of capturing groups!



Explaining the pipe logic

I have 44184 “unique” lines after initial "grep -Po", since I left time in 
the beginning and user agent is in between, all for the sake of 
demonstration:

At this ("grep -Po") point, those “unique” lines will look like:



Explaining the pipe logic

After printing just needed data (output of capturing groups) and sorting 
unique entries from it, we get the true uniqueness we want – just 68 
sets of data:



Explaining the pipe logic

And all of this is done in just around a second!



Customizing this custom LLD

Given idea / LLD script can be used “as is” but it can be customized 
further for specific needs or use cases



What if…

What if out of discovered entities we don’t need actual matches, but 
rather we want to group it all somehow…

For instance, what if in previous example we wouldn’t need each and 
every HTTP status code, but we would like to have only 2XX and “the 
rest”, at the same time, two other capturing groups should give all 
possible matches?



Modified version

Additional parameter will solve this and similar tasks. That parameter 
will have some static or regexp alternatives for each capturing group 
(or none if actual matches are needed), as in our example:



Modified version: result



Modified version: result



https://github.com/b1nary1/zabbix

https://github.com/b1nary1/zabbix


Thanks!


	Slide 1: Logs go LLD
	Slide 2: Me
	Slide 3: Logs
	Slide 4: Zabbix & logs out-of-the-box
	Slide 5: Zabbix & logs out-of-the-box
	Slide 6: Zabbix & logs out-of-the-box
	Slide 7: Zabbix & logs out-of-the-box
	Slide 8: Solution?
	Slide 9: Concept: high level overview
	Slide 10: Concept: the amount of data
	Slide 11: Concept
	Slide 12: Implementation
	Slide 13: Implementation: UnsafeUserParameters 
	Slide 14: Implementation: essence
	Slide 15: Example no. 1
	Slide 16: Example no. 1: configuration
	Slide 17: Example no. 1: configuration
	Slide 18: Example no. 1: result
	Slide 19: Example no. 2
	Slide 20: Example no. 2
	Slide 21: Example no. 2: configuration
	Slide 22: Example no. 2: configuration
	Slide 23: Example no. 2: configuration
	Slide 24: Example no. 2: configuration
	Slide 25: Example no. 2: result
	Slide 26: Example no. 2: result
	Slide 27: Explaining the pipe logic
	Slide 28: Explaining the pipe logic: first step
	Slide 29: Explaining the pipe logic: second step
	Slide 30: Explaining the pipe logic: third step
	Slide 31: Explaining the pipe logic: fourth step
	Slide 32: Explaining the pipe logic
	Slide 33: Explaining the pipe logic
	Slide 34: Explaining the pipe logic
	Slide 35: Explaining the pipe logic
	Slide 36: Explaining the pipe logic
	Slide 37: Customizing this custom LLD
	Slide 38: What if…
	Slide 39: Modified version
	Slide 40: Modified version: result
	Slide 41: Modified version: result
	Slide 42
	Slide 43: Thanks!

