Hard questions of Windows server monitoring

Items and Alerts tweaking and

Zabbix historical improvements

by GIORS GEKS

Zabbix improvements during time

- Availability monitoring by DNS name
- EXE monitoring
- HDD monitoring
- Timeleft

How to measure availability?

Remote monitoring Monitor host>host:port availability 2012-2023

DNS:PORT MONITORING

using POWERSHELL

Net.Tcp.Service can check by DNS NAME

out of the box

Net.Tcp.Service.perf[tcp,python.cfla.gov.lv,443]

Zabbix does what?

RAM used by EXE

True or false?

MicroSoft SQL eats all RAM?

https://azure.microsoft.com/en-us/pricing/details/managed-disks/https://aws.amazon.com/ebs/pricing/

Forecasting Trigger Functions

Host	Name ▲	Last check	Last value	Change
PYTHON-WEB	FDriveTimeleftFPUsed	33m 11s	8y 1M 19d	-22d 21h 37m
PYTHON-WEB	FDriveTimeleftFPUsed	33m 11s	8y 1M 19d	-22d 21h 37m
FILES (PROD)	KPFDTimeleft2	4h 33m 5s	9y 6M 28d	+5M 4d 16h
FILES (PROD)	KPFilesTimeleftCalc	4h 33m 21s	9y 6M 22d	+8M 9d 13h
Redmine D)	RedmineTimeleftdaysroot	33m 3s	12y 7M 19d	+5d 19h 26m
* Zabbix server	ROOTtimeleft90	33m 10s	2M 28d 7h	+1h 26m 20s

Table 4: Exact formulas used in calculations

		linear	polynomial N	exponential	logarithmic	power
	$_{ m value}$	$f^{\star}(t_{ m r})$	$f^{\star}\left(t_{\mathrm{r}}\right)$	$f^{\star}\left(t_{\mathrm{r}} ight)$	$f^{\star}\left(t_{\mathrm{r}} ight)$	$f^{\star}\left(t_{\mathrm{r}} ight)$
	$_{\text{max}}$	$\max \left\{ f^{\star}\left(t_{\mathrm{l}}\right), f^{\star}\left(t_{\mathrm{r}}\right) \right\}$	*	$\max \left\{ f^{\star}\left(t_{\mathrm{l}}\right), f^{\star}\left(t_{\mathrm{r}}\right) \right\}$	$\max \left\{ f^{\star}\left(t_{\mathrm{l}} ight), f^{\star}\left(t_{\mathrm{r}} ight) ight\}$	$\max\left\{ f^{\star}\left(t_{l}\right),f^{\star}\left(t_{r}\right)\right\}$
forecast()	$_{ m min}$	$\min \left\{ f^{\star}\left(t_{\mathrm{l}}\right), f^{\star}\left(t_{\mathrm{r}}\right) \right\}$	*	$\min\left\{f^{\star}\left(t_{\mathrm{l}}\right), f^{\star}\left(t_{\mathrm{r}}\right)\right\}$	$\min\left\{f^{\star}\left(t_{\mathrm{l}}\right),f^{\star}\left(t_{\mathrm{r}}\right)\right\}$	$\min\left\{f^{\star}\left(t_{\mathrm{l}}\right),f^{\star}\left(t_{\mathrm{r}}\right)\right\}$
	delta	$\left f^{\star}\left(t_{\mathrm{l}} ight)-f^{\star}\left(t_{\mathrm{r}} ight) ight $	*	$\left f^{\star}\left(t_{\mathrm{l}}\right)-f^{\star}\left(t_{\mathrm{r}}\right)\right $	$\left f^{\star}\left(t_{\mathrm{l}} ight)-f^{\star}\left(t_{\mathrm{r}} ight) ight $	$\left f^{\star}\left(t_{\mathrm{l}}\right)-f^{\star}\left(t_{\mathrm{r}}\right)\right $
	avg	$\frac{f^*(t_1)+f^*(t_r)}{2}$	$\frac{F(t_{\mathrm{r}})\!-\!F(t_1)}{t_{\mathrm{r}}\!-\!t_1}$	$\frac{f^*(t_r) - f^*(t_1)}{(t_r - t_1)a_1}$	$f^{\star}(t_{\mathrm{r}}) + a_{1} \left(\log \left(1 + \frac{t_{\mathrm{r}} - t_{\mathrm{l}}}{t_{\mathrm{l}}} \right) \frac{t_{\mathrm{l}}}{t_{\mathrm{r}} - t_{\mathrm{l}}} - 1 \right)$	$\begin{cases} \frac{(f^*(t_r)t_r - f^*(t_1)t_1)}{(t_r - t_1)(a_1 + 1)}, & \text{if} a_1 \neq -1\\ \frac{\exp(a_0)\log\left(1 + \frac{t_r - t_1}{t_1}\right)}{t_r - t_1}, & \text{if} a_1 = -1 \end{cases}$
timeleft()		$\frac{x_{\rm th} - a_0}{a_1} - t_1$	**	$\frac{\log(x_{\rm th})-a_0}{a_1}-t_1$	$\exp\left(\frac{x_{th}-a_0}{a_1}\right)-t_1$	$\exp\left(\frac{\log(x_{\rm th})-a_0}{a_1}\right)-t_{\rm l}$

Where f^* is expression from Table 1 with "best fit" coefficients, $t_l = t_{\text{"now"}}$, $t_r = t_{\text{"now"}} + t_{\text{"time"}}$, $F(t) = \sum_{n=1}^{N+1} \frac{a_{n-1}t^n}{n} + C$ is polynomial antiderivative, x_{th} is "threshold", a_i means i-th element of a from Table 2.

^{*} We solve $\frac{df^*(t)}{dt} = 0$ using ** (with N' = N - 1) and search for maximum and minimum among t_1 , t_r and roots lying in between; $\frac{df^*(t)}{dt} = \sum_{n=0}^{N-1} (n+1) a_{n+1} t^n$.

** Exact formulas for N = 1 (see linear case) and N = 2, (Weierstrass—)Durand—Kerner method for $3 \le N \le 6$.

Templates

- Article with detailed explanations with
 - Windows template to monitor EXE, Timeleft and Availability
 - Linux template to monitor Timeleft

Predictive functions

Timeleft function

Forecast function

Small step to mankind, Big step to Admin sleep well

Conclusion

- Lot of good features are not well documented
- Use newest Zabbix7 with new functions
- Usage of experts pays back tcp.service timeleft proc_info etc.
- Change default templates by making alerts dependent and more readable
- Use concatenated graphs in Dashboards
- Timeleft function is more useful than alert "90% disk full"

Contact me GIORS.GEKS@GMAIL.COM