
Artjoms Rimdjonoks

C developer

DNS improvements
in 7.0

22

DNS improvements in 7.0

• Reverse PTR lookups for all existing and new DNS items

• New item net.dns.perf

• New item net.dns.get

3

Zabbix server

Zabbix proxy

Zabbix Windows agent

Zabbix Linux agent

DNS items are Zabbix agent items

DNS server

Zabbix agent 2

4

net.dns[<ip>,name,<type>,<timeout>,<count>,<protocol>]

Checks if the DNS service is up.

Return values:

0 - DNS is down (server did not respond or DNS resolution failed);

1 - DNS is up.

net.dns[,example.com,A]

->

1

Situation before 7.0

5

net.dns.record[<ip>,name,<type>,<timeout>,<count>,<protocol>]

Performs a DNS query.

Return value: a character string with the required type of information.

Type – record type to be queried, possible values:

ANY, A, NS, CNAME, MB, MG, MR, PTR, MD, MF, MX, SOA, NULL, HINFO, MINFO, TXT, SRV

WKS (not supported for Zabbix agent on Windows, Zabbix agent 2 on all OS)

net.dns.record[,example.com,A]

->

example.com A 93.184.215.14

66

Usability improvement when querying PTR records. (ZBXNEXT-3826)

Can be used for existing and new DNS items.

Regular record (any non-PTR) query:

net.dns.record[,example.com,A] -> example.com A 93.184.215.14

PTR record query:

net.dns.record[,107.170.251.121,PTR] –

item becomes unsupported “Cannot perform DNS query.”

Reverse PTR form

7

We cannot just supply IP to DNS server for a reverse PTR lookup…

1) IP addresses need to inverted (because when they are read from left to right - they get
more specific)

2) need to add “.in-addr.arpa” domain for ipv4, (”.ip6.arpa" for ipv6), since reverse lookups
are stored in this special domain

Examples:

net.dns.record[,121.251.170.107.in-addr.arpa, PTR]

net.dns.record[,c.2.b.8.b.6.f.a.a.d.0.8.0.2.8.6.7.0.b.c.f.1.2.0.0.0.8.2.6.0.6.2.ip6.arpa., PTR]

8

How does the world outside Zabbix handle it?

dig tool supports -x option to improve usability:

dig 121.251.170.107.in-addr.arpa. PTR

dig -x 107.170.251.121

dig c.2.b.8.b.6.f.a.a.d.0.8.0.2.8.6.7.0.b.c.f.1.2.0.0.0.8.2.6.0.6.2.ip6.arpa. PTR

dig -x 2606:2800:21f:cb07:6820:80da:af6b:8b2c

9

In Zabbix 7.0 in addition to the original form,

new form can now also be used:

net.dns.record[,107.170.251.121, PTR]

net.dns[,2606:2800:21f:cb07:6820:80da:af6b:8b2c, PTR]

1010

Measures response time for a DNS-query.

Added to Zabbix agent 1 and 2.

ZBXNEXT-5401 (thanks to Robert Young for the patch proposal)

net.dns.perf[<ip>,name,<type>,<timeout>,<count>,<protocol>]

net.dns.perf

11

Zabbix server

DNS server

Zabbix agent

0.002949

net.dns.perf measures RTT from Zabbix agent to DNS server…

AAAA?

2606:2…

RTT

12

…even if query was not resolved and DNS server returned an error.

(e.g. when NXDOMAIN or SERVFAIL was received)

When connection to the DNS server could not be made (timeout) – it returns 0.

Zabbix server Zabbix agent

?
0

13

So, we can have a nice graph:

14

Windows note

For:

net.dns[<ip>,...

net.dns.record[<ip>,...

net.dns.perf[<ip>,...

• ip is ignored on Windows, when using Zabbix agent 1 (and also timeout and count..)

• Windows DNS C library uses Windows system DNS resolver, before connecting to other
remote DNS servers.

• On Windows 0 could be returned only when Zabbix agent 1 fails to connect to the local
resolver...

1515

Before 7.0 for querying record type there was only:

net.dns.record[<ip>,name,<type>,<timeout>,<count>,<protocol>]

Return value: a character string with the required type of information.

net.dns.record[,example.com,A]

->

example.com A 93.184.215.14

Record types: ANY, A, NS, CNAME, MB, MG, MR, PTR, MD, MF, MX, SOA, NULL,
WKS, HINFO, MINFO, TXT, SRV, (not supported for Zabbix agent on Windows,
Zabbix agent 2 on all OS),

net.dns.get

16

net.dns.get[<ip>,name,<type>,<timeout>,<count>,<protocol>,"<flags>"]

• An extended version of the net.dns.record Zabbix agent item with more
record types and customizable flags supported..

• Performs a DNS query and returns detailed DNS record information in
JSON.

17

1. Can query more record types !

A, NS, MD, MF, CNAME, SOA,MB, MG, MR, PTR, NULL, HINFO, MINFO, MX, TXT, SRV

+

RP, AFSDB, X25, ISDN, RT, NSAPPTR, SIG, KEY, PX, GPOS, AAAA, LOC, NXT, EID, NIMLOC,, ATMA,
NAPTR, KX, CERT, DNAME, OPT, APL, DS, SSHFP, IPSECKEY, RRSIG, NSEC, DNSKEY, DHCID,
NSEC3, NSEC3PARAM, TLSA, SMIMEA, HIP, NINFO, RKEY, TALINK, CDS, CDNSKEY, OPENPGPKEY,
CSYNC, ZONEMD, SVCB, HTTPS, SPF, UINFO, UID, GID, UNSPEC, NID, L32, L64, LP, EUI48, EUI64,
URI, CAA, AVC, AMTRELAY

Note, there are no WKS and ANY record types:

1) ANY is deprecated (RFC8482) ...

2) WKS is not used in practice

Non-capital cases or mixed cases are not allowed in item key arguments.

18

2. Can pass Flags !

flag opposite flag comment

cdflag nocdflag(default) checking disabled (dnssec only)

rdflag(default) nordflag recursion desired

dnssec nodnssec (default)

nsid nonsid (default)

edns0 (default) noedns0

aaflag noaaflag (default) authoritative answer

adflag noadflag (default) authenticated data (dnssec only)

19

Other tools like dig allow the following when supplying flags:

dig zabbix.com +short +noshort +short

104.26.7.148

104.26.6.148

dig +dnssec +nodnssec zabbix.com DS

20

net.dns.get has some checks:

net.dns.get[,zabbix.com,A,,,,"nonsid,nsid"]

One more example:

net.dns.get[,zabbix.com,A,,,,"noedns0,nsid"]

21

3. return is a JSON!

net.dns.get[,zabbix.com,A,,,,"nsid"]

Result:

{"additional_section":[{"extended_rcode":0,"name":".","rdata":{"options":[{"code":0,"nsid":"33
38 66 30 62 32 37 66 39 39 34 32 34 38 31 37 39 66 37 39 63 31 35 36 64 38 31 61 36 33 30 32
2e 72 65 73 6f 6c 76 65 64 2e 73 79 73 74 65 6d 64 2e 69
6f"}]},"rdlength":56,"type":"OPT","udp_payload":65494}],"answer_section":[{"class":"IN","name"
:"zabbix.com.","rdata":{"a":"104.26.6.148"},"rdlength":4,"ttl":120,"type":"A"},{"class":"IN","name"
:"zabbix.com.","rdata":{"a":"104.26.7.148"},"rdlength":4,"ttl":120,"type":"A"},{"class":"IN","name"
:"zabbix.com.","rdata":{"a":"172.67.69.4"},"rdlength":4,"ttl":120,"type":"A"}],"flags":["RD","RA"],"
query_time":"0.02","question_section":[{"qclass":"IN","qname":"zabbix.com.","qtype":"A"}],"re
sponse_code":"NOERROR","zbx_error_code":0}

22

Result can be easily preprocessed with JSONPath:

$.['additional_section'][0]['rdata']['options'][0]['nsid’]

Result:

33 38 66 30 62 32 37 66 39 39 34 32 34 38 31 37 39 66 37 39 63 31 35 36 64 38 31 61 36 33 30
32 2e 72 65 73 6f 6c 76 65 64 2e 73 79 73 74 65 6d 64 2e 69 6f

23

Return JSON always has:

1) “query_time” (in seconds, float type) e.g. "query_time": "0.02"

2) "zbx_error_code” (with optional “zbx_error_msg” if there is an error)

Scenario "zbx_error_code" "zbx_error_msg"

No errors and the DNS
response was received and
parsed.

0

DNS is down. -1 "Communication error"

Error occurs during JSON
parsing

-2 "Received unexpected
response"

24

Use-case

Let’s say we want to display:

• nsid

• response_code

• query_time

values in Dashboard widgets…

What do we do ?

Should we create 3 net.dns.get items now ?

25

Use-case

net.dns.get, like other *.get items that return multiple metric in bulk JSON:

• proc.get

• system.sw.packages.get

• vfs.dir.get

• etc …

(except web.page.get (historical reasons))

are designed to work as master items, which provide input data for multiple dependent items
for further preprocessing.

26

Use-case

• Single, expensive master item extracts bulk metrics.

• Several dependent items extract from master item particular metric they want.

• Any item can be a master item, even the dependent item.

• *.get items return JSON, which allows more advanced/easier preprocessing.

net.dns.get
master item

DNS server

JSON

nsid dependent
item

query time
dependent item

response code
dependent item

27

Dependent items

We need 3 new dependent items that will take value from net.dns.get master item.

28

Dependent items

query time preprocessing

$.['query_time']

29

Dashboard widgets

30

Available only for Zabbix agent 2

… since there is different DNS C library for every OS ...

And in Go – we could use just the one (https://github.com/miekg/dns)

Artjoms Rimdjonoks

C developer

	Presentation
	Slide 1: DNS improvements in 7.0
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Reverse PTR form
	Slide 7
	Slide 8
	Slide 9
	Slide 10: net.dns.perf
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: net.dns.get
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

