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Introduction
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What is an anomaly?

Image credit: Herluf Bidstrup
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What is an anomaly?
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What is an anomaly in time series?

An anomaly in a time series is a rareor unexpected
point or sequence occurring over a specified time 
interval, often considered unusual or undesirable.
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Anomaly types

Point-based



77

Anomaly types

Point-based

Short duration 

Easy to spot

Easy to detect
▪ sometimes even 

with stddevsamp()



88

Anomaly types

Subsequence-based
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Anomaly types

Subsequence-based

Longer duration 

Harder to spot

Difficult to detect
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How does Zabbix do it?

Trigger functions 

stddevpop(), stddevsamp(), mad()

varpop(), varsamp()

baselinedev()

trendstl()
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How does Zabbix do it?

trendstl()- features

implements STL anomaly detection algorithm

decomposes data into trend, seasons, residual

data must have pronounced seasonal pattern  
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How does Zabbix do it?

trendstl()- shortcomings

7 parameters (need a data science degree)

▪ trendstl(/host/key,100h:now/h-10h,100h,2h,3,"mad”,1001)

careful choice of seasonality

no support for multiple seasons

subsequence-based anomalies out of scope
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More detection methods

Requirements

Performance and efficiency

Easy to use (the less knobs and switches the better)

Easy to understand and interpret results

Subsequence-based anomalies

Multiple seasonalities
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Anomaly detection methods

“Anomaly Detection in Time Series: A Comprehensive Evaluation”
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Anomaly detection methods

Input types
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Anomaly detection methods

Training types

Supervised
▪ Manual training

Semi-supervised
▪ Training on a clean data

Unsupervised
▪ No training

Image credit: Herluf Bidstrup
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Anomaly detection methods
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Anomaly detection methods

Types

Statistical methods
▪ Z-score, Moving Average, ARIMA, …

Machine learning and data analysis methods
▪ STL, FFT-based anomaly detection, …

Deep learning methods
▪ LSTM autoencoders, RNN, …
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Deep learning – is it any good?

Deep learning methods

Autoencoders

Recurrent Neural Networks (RNNs)

Generative Adversarial Networks (GANs)

Convolutional Neural Networks (CNNs)

LLMs (even!)
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Deep learning – is it any good?

“most anomaly detection algorithms, especially ones based 
on deep learning, have ten or more parameters”

Wu, R., et al. "Current Time Series Anomaly Detection Benchmarks are Flawed and 
are Creating the Illusion of Progress" (2020)

“we are not aware of a single paper that presents forceful 
reproducible evidence that deep learning outperforms much 
simpler methods”

Wu, R., et al. "Current Time Series Anomaly Detection Benchmarks are Flawed and 
are Creating the Illusion of Progress" (2020) 
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Deep learning – is it any good?

"Current Time Series Anomaly Detection Benchmarks are Flawed and are Creating the Illusion of Progress"
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Deep learning – is it any good?

“We found that deep learning approaches are not (yet) 
competitive despite their higher processing effort on training 
data”
Schmidl, S., et al. “Anomaly Detection in Time Series: A Comprehensive 
Evaluation.” (2022) 

“Our experiments showed that the classical machine learning 
methods … outperform the deep learning methods.”
Rewicki, F., et al. “Is it worth it? Comparing six deep and classical methods for 
unsupervised anomaly detection in time series” (2023) 
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Deep learning – is it any good?

“The experiments showed that the statistical approaches perform best 
on univariate time-series ... They also require less computation time 
compared to the other two classes. 

Although deep learning approaches have gained huge attention by the 
… community in the last years, our results have revealed that they are 
not … able to achieve the accuracy values of the statistical methods on 
the univariate time-series benchmarks”

Braei, M., et al. “Anomaly Detection in Univariate Time-series: A Survey on the 
State-of-the-Art” (2020) 
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Deep learning – is it any good?

“… those [deep learning] methods, though potentially useful 
…, do not bring much additional value for the task of TAD 
[anomaly detection] and their complexity is definitely not 
justified. 

What is even more worrisome, is that they managed to 
create up to now an illusion of progress”

M. Saquib Sarfraz, et al. “Position: Quo Vadis, Unsupervised Time Series Anomaly 
Detection?” (2024) 
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Deep learning – is it any good?

Zabbix requirements

Performance and efficiency

Easy to use (the less knobs and switches the better)

Easy to understand and interpret results

Subsequence-based anomalies

Multiple seasonalities
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Distance-based methods

“Anomaly Detection in Time Series: A Comprehensive Evaluation”
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Matrix Profile

Method, not an algorithm
▪ STAMP, STOMP, SCRIMP, SCRIMP++, 

SCAMP, VALMOD, MERLIN, …

Distance-based
▪ Calculates nearest neighbours

Subsequences of constant length
▪ Motifs – similar subsequences 

▪ Discords – anomalies

Fast on long subsequences

Predictable time
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Matrix Profile

Applicable for subsequence and point-based 
anomalies

Easily parallelizable

No false positives

No tuning parameters

Used in many domains
▪ IT infrastructure, IoT, space and sattelites, medicine, seismology, industrial 

equipment, water distribution, …
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Matrix Profile

Calculation
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Matrix Profile

Calculation
(naïve approach)

Get distances 
between all 
subsequences

Get minimum for 
every row

Compose profile
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Matrix Profile - Examples

Raw data - load
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Matrix Profile - Examples

STL analysis – not good
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Matrix Profile - Examples

Matrix Profile analysis
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Matrix Profile - Examples

Raw data – CPU utilization
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Matrix Profile - Examples

Matrix Profile analysis: Z-normalization
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Matrix Profile - Examples

Matrix Profile analysis: Z-normalization off
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Matrix Profile - Examples

Raw data – ECG
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Matrix Profile - Examples

Matrix Profile analysis
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Matrix Profile

Zabbix requirements

Performance and efficiency 

Easy to use

Easy to understand and interpret results

Subsequence-based anomalies

Multiple seasonalities
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Multiple seasonalities

Contenders

Prophet
▪ Released by Facebook in 2017

▪ Unlimited seasonalities

▪ Easy to use

▪ Designed for business data

▪ Primary goal is forecasting
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Multiple seasonalities

Contenders

MSTL
▪ New, published in 2021

▪ Extension of STL

▪ Unlimited seasonalities, detects 
seasons automaticaly

▪ Tuning parameters

▪ Faster than Prophet
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Coming to Zabbix

Trigger functions

trendmp(/host/key,eval,detect,subseq)

▪ Number of discords

trendmseason(/host/key,eval,detect)

▪ Anomaly rate
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Further plans and research

Include anomaly detection in standard templates

MERLIN, VALMOD

Multivariate anomaly detection

Untie from trends

Mark anomalies on graphs
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Thank you!
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