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What is Al used for in IT infrastructure monitoring?

& Al has become a crucial tool in IT infrastructure monitoring, providing a more proactive and

efficient way to manage and optimize systems. Here are some key uses of Al in this area:

1. Anomaly Detection: Al algorithms can quickly identify deviations from normal behavior in IT
systems. These anomalies might indicate potential issues like hardware failures, cyberattacks,
or configuration errors. By detecting anomalies early, Al helps prevent these issues from

escalating into serious problems.
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What is an anomaly? e
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anomaly noun

anom-a-:ly ( e-'na-me-lé«)

plural anomalies

Synonyms of anomaly >

1 :something different, abnormal, peculiar, or not easily classified : something
anomalous
They regarded the test results as an anomaly.

2 :deviation from the common rule ;: IRREGULARITY




What is an anomaly in time series?

An anomaly in a time series is a rare or unexpected
point or sequence occurring over a specified time
interval, often considered unusual or undesirable.
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Anomaly types A
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Point-based

Point Anomalies

100 O —— Data
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Anomaly types
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Anomaly types

Subsequence-based

Subsequence Anomaly

Data

Anomalous Subsequence

140

120

100

15

1.0 1

0.5 1

=0.5 1

=1.0

=1.5 1

Time




Anomaly types

Subsequence-based .,

» Longer duration
» Harder to spot
» Difficult to detect

10

Distribution Histogram
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Trigger functions

» stddevpop(), stddevsamp(), mad()
varpop(), varsamp()

R
SN
N

TR
N B
S
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trendstl ()
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trendstl ()- features

» implements STL anomaly detection algorithm
» decomposes data into trend, seasons, residual
» data must have pronounced seasonal pattern

SRR
SRR
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trendstl ()- shortcomings

> / pPara Meters (need a data science degree)
= trendstl(/host/key,100h:now/h-10h,100h,2h,3,"mad”,1001)

» careful choice of seasonality
no support for multiple seasons
» subsequence-based anomalies out of scope

v
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Requirements

» Performance and efficiency

4 Easy O USe (the less knobs and switches the better)

» Easy to understand and interpret results
» Subsequence-based anomalies

» Multiple seasonalities
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Input types

Multivariate Time Series
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Training types

» Supervised
= Manual training

» Semi-supervised
= Training on a clean data

» Unsupervised
= No training
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Anomaly detection methods
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Therefore, research on anomaly detection in the IoT

environment has become popular and necessary in recent years.
BRE  This survey pravndﬁ an overview to understand the current
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TAnoGAN: Time Series Anomaly Detection with
Generative Adversarial Networks

Md Abul Bashar
School of Computer Science
Centre for Data Science
Queensland University of Technology
Brisbane, Queensland 4000, Australia
Email: ml.bashar@qut.edu.au

Abstract—Anomaly detection in time series data is a significant
problem faced in many application areas such as manufacturing,
medical imaging and cyber-security. Recently, Generative Adver-
sarial Networks (GAN) have gained attention for generation and
anomaly detection in image domain. In this paper, we propose
a novel GAN-based unsupervised method called TAnoGan for
ies in time series when a small number of data
points are available. We evaluate TAnoGan with 46 real-world
time series datasets that cover a variety of domains. Extensive

Quant ABSTRACT
computat It is important to detect anomalous inputs when deploying machine lcarning
comparec systems. The use of larger and more complex inputs in deep learning magnifies
tegers [1] the difficulty of distinguishing between lous and i ion examples.
ing linear At the same time, diverse image and text data are available in enormous quantities.
tography We propose leveraging these data to improve deep anomaly detection by training
for the | anomaly detectors against an auxiliary dataset of outliers, an approach we call
tion of qu Outlier Exposure (OE). This enables anomaly detectors to generalize and detect
fum Mac unseen anomalies. In extensive experiments on natural language processing and
L small- and large-scale vision tasks, we find that Outlier Exposure significantly
A promis; N : o 3 %
ad improves d_clccuon performance. We x_alw o_bscrvc_lha_l cutting-cdge generative
mace gre models trained on CIFAR-10 may assign higher likelihoods to SVHN images
ing [16], 1 than to CIFAR- 10 images; we use O to mitigate this issue. We also analyze the
20, and flexibility and robustness of Outlier Exposure, and identify characteristics of the
Anoma auxiliary dataset that improve performance.
data that
been exte 1 INTRODUCTION
fraud det
care [26]. Machine Leaming systems in deployment often encounter data that is unlike the model’s trai
been pro data. This can occur in 2 nove finding unknown disease
semi-supt detecting sensor failure. In these suuauons, models that can detect anomalies (Liu et al,, 2
unsupery Emmott et al., 2013) are capable of correctly flagging unusual examples for human interventio
as they d carefully proceeding with a more conservative fallback policy.
proposed Behind many machine learning systems are deep learning models (Krizhevsky et al., 2012) w
(called Lt can provide high performance in a variety of applications, so long as the data seen at test tit  detecting an
unsuperv similar to the training data. However, when there is a distribution mismatch, deep neural net
rithm is t classifiers tend to give high confidence predictions on anomalous test examples (Nguyen e
containin 2015). This can invalidate the use of as calib: estin
ever, sim| (Guo et al., 2017), and makes detecting anomalous examples doubly important.
is quite t: Several previous works seek 1o address these problems by giving deep neural network classi
a means of assigning anomaly scores to inputs. These scores can then be used for detecting
of-distribution (OOD) examples (Hendrycks & Gimpel, 2017; Lee et al., 2018; Liu et al., 2(
* liwenmir ese have been to work isi well for complex input spaces,
1 gaof@bu as images, text, and speech. Moreover, they do not require modeling the full data distribution
instead can use heuristics for detecting unmodeled phenomena. Several of these methods d
by using from only i data.

In this paper, we investigate a complementary method where we train models to detect unmoc
data by learning cues for whether an input is unmodeled. While it is difficult to model the full

results show that TAnoGan performs better than
traditional and neural network models.
I. INTRODUCTION

The ubiquitous use of networked sensors and actuators in
places like smart buildings, factories, power plants and data
centres as well as the emergence of the Internet of Things
(1oT) have resulted in generating substantial amounts of time
series data. These data can be used to continuously monitor the
working conditions of these environments to detect anomalies.

Richi Nayak
School of Computer Science
Centre for Data Science
Queensland University of Technology
Brisbane, Queensland 4000, Australia
Email: r.nayak@gqut.edu.au

time series data [10]. Recently a GAN framework coupled
with the mapping of data to latent space has been explored for
anomaly detection [3], [2]. While GAN has been extensively
investigated in image domain for generation and anomaly
detection, only a few works (e.g. [10], [2]) have explored the
potential of GAN in time series domain.

In this paper, we propose a novel method, Time series
Anomaly detection with GAN (TAxluGﬂnj" for unsupervised
anomaly detection in time series data when a small number of
data points are available. Detecting anomalies in time series
using GAN requires modelling the normal behaviour of time
series data using the adversarial training process and then
detecting anomalies using an anomaly score that indicates how
much the data points have deviated from the normal behaviour
[3], [12], [2]. For learning the anomaly score, we first map
the real time series data space to a latent space and then
reconstruct the data from latent space. The anomaly score is

o which anomalies can be caused by both malicious and non-

1‘/1 T IV malicious events, leading to the difficulty of determining anomaly ~€ausal factors. The identif
patterns. The lack of labeled data in the computer networking £reat inierest o users anc
domain further this issue, ing the supervised methods require

BY RE :}f 'I::“" ll:;f:lzh:;lﬂblt l:fmh:ﬂﬂhlla real-world “ﬂ“:'n":- truth data to establish caus

t ress lenge, paper, we propose an - .

to-end anomaly detection model development pipeline. This | TS PAPEr we prest
framework makes it possible to consume user feedback and UOWS continuously evalu
Min: J'l‘l] enable continuous user-centric model performance evaluation n‘mmnly detection muq:l.
ing Ji and optimization. We demonstrate the efficacy of the framework tion of our framework is a
Pin-Yu C] by way of introducing and bench-marking a new forecasting  abnormally high amount ¢
model - named Lachesis — on a real-world networking problem. networking switches devel

Monash | Experiments have demonstrated the robustness and effectiveness . © i
I of the two proposed versions of Lachesis compared with other . e e "Emﬂ"‘ ol an
The HDl'l.‘ models proposed in the literature. Our findings underscore the ability to continuously qua
potential for improving the performance of data-driven products root causes presents a nun

{mlng jin, yuantang.lij@monash.edu, pin-yu.chen@ibm.com

yuxliang@outlook.com, s.pan@griffith.edu.au, gingsongedulc
{weiming.wsy,lintao.mlt,chuzhixuan.czx, james.z,peter.sxm}

ABSTRACT

Time series forecasting holds significant importance in many real-wor
systems and has been extensively studied. Unlike natural language pro
and computer vision (CV), where a single large model can tackle mu
models for time series forecasting are often specialized, necessitating
signs for different tasks and applications. While pre-trained foundat
have made impressive strides in NLP and CV, their development in
domains has been constrained by data sparsity. Recent studies have re
large language models (LLMs) possess robust pattern recognition amn
abilities over complex sequences of tokens. However, the challenge
effectively aligning the modalities of time series data and natural 1
leverage these capabilities. In this work, we present TIME-LLM, a
ming framework to repurpose LLMs for general time series forecasti
backbone language models kept intact. We begm by reprogrammin
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Types

» Statistical methods
= /-score, Moving Average, ARIMA, ...

» Machine learning and data analysis methods
= STL, FFT-based anomaly detection, ...

» Deep learning methods
= LSTM autoencoders, RNN, ...
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Deep learning methods

» Autoencoders

» Recurrent Neural Networks (RNNSs)

» Generative Adversarial Networks (GANS)
» Convolutional Neural Networks (CNNSs)
» LLMs (even!)
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“most anomaly detection algorithms, especially ones based
on deep learning, have ten or more parameters”

Wu, R., et al. "Current Time Series Anomaly Detection Benchmarks are Flawed and
are Creating the lllusion of Progress" (2020)

“we are not aware of a single paper that presents forceful
reproducible evidence that deep learning outperforms much

simpler methods”

Wu, R., et al. "Current Time Series Anomaly Detection Benchmarks are Flawed and
are Creating the lllusion of Progress" (2020)




Deep learning - is it any good?

0,
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"Current Time Series Anomaly Detection Benchmarks are Flawed and are Creating the Illusion of Progress
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“We found that deep learning approaches are not (yet)
competitive despite their higher processing effort on training
data”

Schmidl, S., et al. “Anomaly Detection in Time Series: A Comprehensive
Evaluation.” (2022)

“Our experiments showed that the classical machine learning
methods ... outperform the deep learning methods.”

Rewicki, F., et al. “Is it worth it? Comparing six deep and classical methods for
unsupervised anomaly detection in time series” (2023)
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“The experiments showed that the statistical approaches perform best

on univariate time-series ... They also require less computation time
compared to the other two classes.

Although deep learning approaches have gained huge attention by the
.. community in the last years, our results have revealed that they are
not ... able to achieve the accuracy values of the statistical methods on
the univariate time-series benchmarks”

Braei, M., et al. “Anomaly Detection in Univariate Time-series: A Survey on the
State-of-the-Art” (2020)




Deep learning - is it any good?

“.. those [deep learning] methods, though potentially useful
..., do not bring much additional value for the task of TAD
[anomaly detection] and their complexity is definitely not
justified.

What is even more worrisome, is that they managed to
create up to now an illusion of progress”

M. Saquib Sarfraz, et al. “Position: Quo Vadis, Unsupervised Time Series Anomaly
Detection?” (2024)
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Zabbix requirements

» Subsequence-based anomalies
» Multiple seasonalities




Distance-based methods

“Anomaly Detection in Time Series: A Comprehensive Evaluation”

Learn. Algorithm TL OOM ERR AUC-ROC all datasets
® Sub-LOF [22] 2% 0% 0% = I
V GrammarViz [120] 3% 0% 0% : L f
ADWT-MLEAD [134] 0% 0% 0% l I H
® VALMOD [82] 1% 9% 11% = HEE
® SAND [17] 5% 1% 22% l ' I
® Left STAMPi [156] 2% 0% 1% I |
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» Method, not an algorithm

= STAMP, STOMP, SCRIMP, SCRIMP++,
SCAMP, VALMOD, MERLIN, ...

» Distance-based
= Calculates nearest neighbours

Distance Matrix of Time Series (100 data points)

» Subsequences of constant length
= Motifs - similar subsequences
= Discords - anomalies

Subsequence Index
Distance

» Fast on long subsequences
» Predictable time

0 20 40 60 80
Subsequence Index
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» Applicable for subsequence and point-based
anomalies

»Easily parallelizable
»No false positives

»No tuning parameters
»Used in many domains

= |T infrastructure, |oT, space and sattelites, medicine, seismology, industrial
equipment, water distribution, ...
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Calculation

Value

Time Series
T T
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Matrix Profile

Time Series

Value

—&— Time Series
=== Anomaly
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1
1
1
}
1
} r T

0.0 12.5 15.0

0.0 2.5 5.0 7.5 1
Index

Ca | C U | ati O n Distance Matrix

(naive approach)

» Get distances
between all
subsequences

» Get minimum for
every row

Subsequence Index

» Compose profile

0 2 4 6 8 10 12 14 16
Subsequence Index

Matrix Profile
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Raw data - load

Value over Time

3.0 1

2.5 1

2.0 1

11459

Value

1.0 1

:: Al diill | Lo dlo ol oDl 1l

2014-04-01 2014-04-03 2014-04-05 2014-04-07 2014-04-09 2014-04-11 2014-04-13 2014-04-15
Timestamp




Trend

Matrix Profile - Examples

STL analysis - not good

ZABBIX

SUMMIT

2024

0.025 A
0.020 1
0.015

0.010

Season

A A — Ll o} Ll |
. . ‘ r . -
. L] L] °
] o e ¢ . 0el® 3 ° . 3 F 4 ) M
% . o $3°g, s ..’ ¢ s ° o' ®e .' 0% %
b o °
R T T T e e v WYRT VN TP FOVVE P T
= ° ° ° ® 3 = A °
° o
-2 . L ° ° L °
T T T T . T . T
2014-04-01 2014-04-03 2014-04-05 2014-04-07 2014-04-09 2014-04-11 2014-04-13




Matrix Profile - Examples e

2024

Matrix Profile analysis

Matrix Profile
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Raw data - CPU utilization

Value over Time
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Matrix Profile - Examples

Matrix Profile analysis: Z-normalization

Matrix Profile

Value

Matrix Profile

22 A
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Matrix Profile analysis: Z-normalization off

Matrix Profile

Value

Matrix Profile - Examples

Matrix Profile
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Matrix Prof

Raw data - ECG

le - Exam

Value over Time
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Matrix Profile analysis

Matrix Profile

Matrix Profile
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Zabbix requirements

» Performance and efficiency

» Easy to use [

» Easy to understand and interpret results
» Subsequence-based anomalies [

» Multiple seasonalities

M

K
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SUMMIT

2024

Tt




Multiple seasonalities S

2024

CO n te n d e rS Forecasting at Scale

Sean J. Taylor*t
Facebook, Menlo Park, California, United States
sjt@fb.com

and

Benjamin Letham!
Facebook, Menlo Park, California, United States

> Prophet e o

Released by Facebook in 2017
Unlimited seasonalities Forccasting i » common data sclence task that helpsorganisations with capacity

planning, goal setting, and anomaly detection. Despite its importance, there are

—_—

=

serious challenges associated with producing reliable and high quality forecasts — S Y

E a Sy to u S e especially when there are a variety of time series and analysts with expertise in

time series modeling are relatively rare. To address these challenges, we describe
a practical approach to forecasting “at scale” that combines configurable models

Des |g ne d f or b us | ness d ata with analystin-the-loop performance analysis. We propose & modular regression

model with interpretable parameters that can be intuitively adjusted by analysts
with domain knowledge about the time series. We describe performance analyses

I i I t d evaluate f i d d ically flag fi ts f
Primary goa | is forecasti ng ol review and adjustment. Took that bl analyes 10 1 ther expertse most

effectively enable reliable, practical forecasting of business time series.

Keywords: Time Series, Statistical Practice, Nonlinear Regression
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C O n te n d e r S MSTL: A Seasonal-Trend Decomposition Algorithm for Time

Series with Multiple Seasonal Patterns

Kasun Bandara®*, Rob J Hyndman®, Christoph Bergmeir®

“School of Computing and Information Systems, Melbourne Centre for Data Science, University of
Melbourne
b Department of Econometries and Business Statistics, Monash University
¢ Department of Data Science and Al, Monash University

»MSTL

- N b | 1 h d 1 2 O 2 1 The decomposition of time series into components is an important task that helps to un-
ew, pupblisned In

derstand time series and can enable better forecasting. Nowadays, with high sampling rates

Exte n S i O n Of ST L leading to high-frequency data (such as daily, hourly, or minutely data), many real-world

|
datasets contain time series data that can exhibit multiple seasonal patterns. Although
m U n | i m ite d S e a S O n a | iti e S’ d ete Cts several methods have been proposed to decompose time series better under these circum-
. stances, they are often computationally inefficient or inaccurate. In this study, we propose
S e a S O n S a u to m a t I ca |y Multiple Seasonal-Trend decomposition using Loess (MSTL), an extension to the traditional
R Seasonal-Trend decomposition using Loess (STL) procedure, allowing the decomposition of
u Tu n I n g p a ra m ete rS time series with multiple seasonal patterns. In our evaluation on synthetic and a perturbed
real-world time series dataset, compared to other decomposition benchmarks, MSTL demon-

|

Fa Ste r t h a n P rO p h et strates competitive results with lower computational cost. The implementation of MSTL is

available in the R package forecast.
Keywords: Time Series Decomposition, Multiple Seasonality, MSTL, TBATS, STR

*Corresponding Author Name: Kasun Bandara, Affiliation: School of Computing and Information Sys-
tems, Melbourne Centre for Data Science, University of Melbourne, Melbourne, Australia, Postal Address:
School of Computing and Information Systems, The University of Melbourne, Victoria 3052, Australia,
E-mail address: Kasun.Bandara@unimelb.edu.an
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Trigger functions

» trendmp(/host/key,eval,detect,subseq)
= Number of discords

» trendmseason(/host/key,eval,detect)
= Anomaly rate
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» Include anomaly detection in standard templates
» MERLIN, VALMOD

» Multivariate anomaly detection

» Untie from trends

» Mark anomalies on graphs
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