Zabbix at Scale

Global Problem View for Multi-Instance Environments

IntelliTrend GmbH

Contact: Wolfgang Alper

wolfgang.alper@intellitrend.de

Zabbix at Scale

Global Problem View for Multi-Instance Environments

With special thanks to

Deutsche Telekom Technik GmbH

for a great project

When one Zabbix server is not enough

Where it all began

When one Zabbix server is not enough

It started with an overloaded Zabbix Server ...

- Number of Hosts increased
- Number of Items increased
- Number of Triggers increased

This led to a significant increase in utilization, especially for NVPS = new values per second.

Performance Tuning

First step was to analyze and improve the performance of the Zabbix System

- Use proxies for data collection (and preprocessing)
- Use larger time periods in items
- Clean up templates of outdated items
- Use improved items if available
- Use Zabbix Agent active where possible
- Check Zabbix server configuration (cache, poller, etc)
- Check Zabbix proxy configuration (cache, poller, etc)

Performance Tuning

Next step was to analyze and improve the performance of the Database System

- Check Database version
- Check Database server settings (huge topic...)
- Check Database server hardware (cpu, memory, storage, disk i/o, volume separation for db and log ...)
- Check Database server metrics for changes (reads, writes ...)
- Use Partitioning

When one Zabbix server is not enough

The reality of "mega-server"

There is always a limit

- No matter how much you tune a single box, CPU, RAM, disk-I/O or network will saturate
 eventually.
- A "mega-server" upgrade is a big-bang, high-risk investment (long lead-times, large CapEx).
- When the ceiling is hit you must re-architect not just add more resources.

Horizontal scaling = predictable and cost-effective

- Predictable growth: Add another identical node whenever CPU, RAM or I/O start to saturate.
- **Cloud-friendly:** Commodity VMs, containers or bare-metal instances are the default offering in every public-cloud catalog.
- Cost-effective: Small, off-the-shelf servers (or modest cloud instances) cost far less per unit of
 compute than a custom high-end appliance. So capital-expenditure (CapEx) stays low and
 operational-expenditure (OpEx) can be optimised by right-sizing each node.
- Higher availability: Failure of a single node only removes a slice of capacity; the rest of the cluster continues to operate.
- Simpler (hardware) lifecycle: Replace individual nodes without downtime for the whole service.

Scaling using multiple Zabbix Server

Data Collection: To scale use multiple Zabbix Proxies

Problem Detection and Alerting: To scale use multiple Zabbix Servers

Problem View: Each Zabbix Instance has it's own problem view

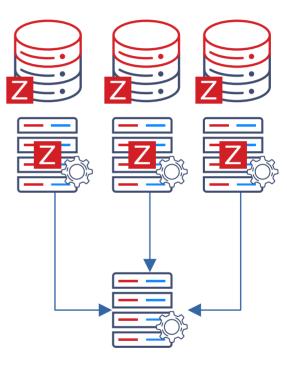
Central problem **view** gets **lost.** Ops-team needs to check all instances.

When one Zabbix server is not enough

The Global Problem View Server idea

The GPV-Server idea

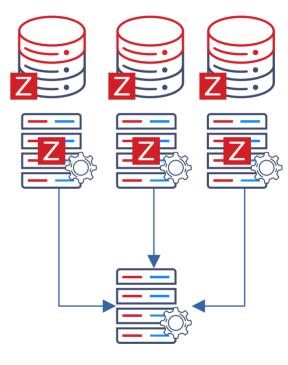
What if there were a **central server** that would **unify** the view of **problems** across multiple Zabbix servers?



The GPV-Server idea

How it should work

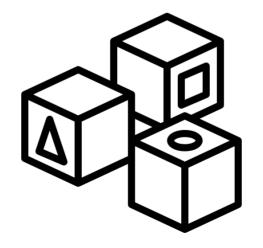
- Pull open problems from any number of Zabbix servers via the Zabbix API (read-only token).
- Normalise host names, tags, and severity into a common schema.
- Store the unified list in its own tiny DB.
- Cache metadata for quick access.
- Provide an API that shows all problems together.
- Integrate into the Zabbix frontend using the module API.
- Support Zabbix HA setups (Server and Frontend).


Aggregated Problem View

The GPV-Server idea

From the user's perspective

- One or more Master Zabbix Server that show problems from related Zabbix instances.
- **Filter settings** in Problem View to select specific Zabbix instances if needed.
- Support for Zabbix Server HA and Zabbix Frontend HA.
- Global-Problem-View Dashboard Widget that allows to create specific Dashboards by Instance or as summary.
- Add a new Zabbix Server by just adding a new endpoint.
- **Jump to** Source Instance by clicking on the problem in the global problem view.

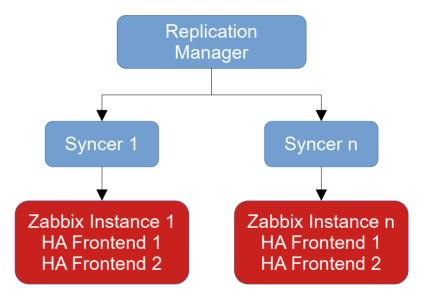


Aggregated Problem View

When one Zabbix server is not enough

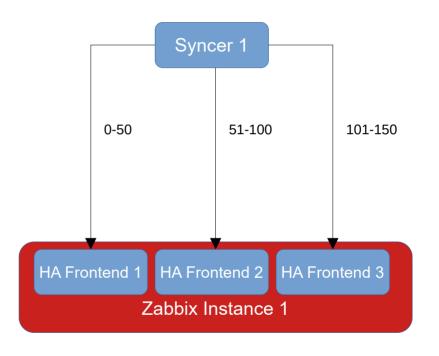
GPV-Server architecture

Design considerations

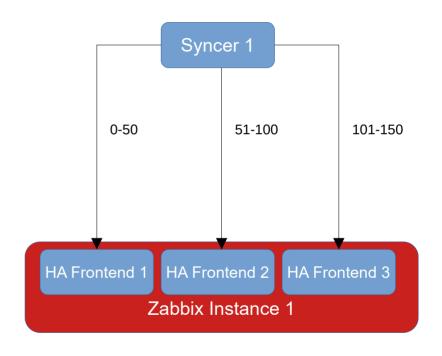

The GPV-Server **cannot** simply perform parallel request using the Zabbix API to call Zabbix instances when a client requests a list of **current problems**. Why:

- The GPV-Server needs to perform multiple API calls per Zabbix instances to produce an open problem list with all the metadata required by the Zabbix frontend: problem.get, trigger.get, event.get, mediatype.get, user.get and maintenance.get
- Some of these API calls have **sequential dependencies**. They cannot be executed in parallel, because their parameters depend on a previous API call.
- This means the GPV-Server would perform at least **6 API calls** per Zabbix instance. Example with 10 Zabbix instances: 6 x 10 = 60 API calls just to load the list of problems. And - the user would have to **wait** for the **slowest** servers to complete or timeout.
- This is why the design adds a db **cache** for open/closed problems on the GPV-Server.

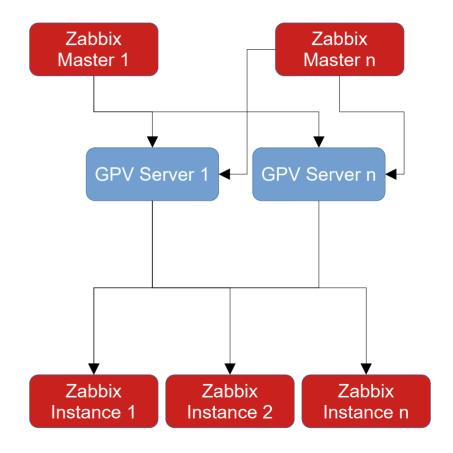
Replication process


- Replication Manager creates and manages Syncers.
- One syncer process per Zabbix instance.
- Each syncer process has an independent asynchronous replication loop and a separate independent ping loop.
- The replication loop replicates events and all required metadata.
- The ping loop checks connectivity with a single frontend or all HA frontends for the syncer's target.

Optimization when using HA Frontends


- To increase the efficiency of the replication we can take advantage of HA frontends by doing Round-Robin style load balancing.
- Example: All events with an eventid between 0 and 150 to be fetched using a parallel loading strategy using all HA frontend nodes.
- Of cause this is only possible, if there are multiple frontend nodes.

Overload handling


- If a syncer process gets overloaded (new events open faster than we are able to replicate them) we handle this similar to a WAL based replication of a database.
- We simply accept that we fall behind and keep replicating at a steady maximum replication rate until we eventually catch back up.
- This approach leads to predictable behaviour and avoids unexpected load spikes on the GPV server.

GPV-Server HA setup

- The GPV-Server can be deployed in an active/active HA setup.
- There is no synchronization needed, because the GPV-Server uses its database only as a cache, similar to a Zabbix-Proxy.
- The GPV frontend modules support configuring multiple GPV-Server nodes and switches between them automatically based on their availability and replication status.
- This makes it easy to deploy the GPV-Server in cloud environments like Kubernetes.

Overview of Zabbix instances states

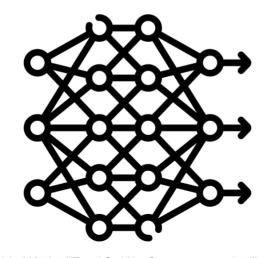
A Zabbix instance can be in one of the following states from the perspective of the GPV-Server:

- INITIALIZING: The instance is currently being initialized and is not yet operational.
- ACTIVE: The instance is fully replicated and there are no problems.
- DEGRADED: The instance is replicated and its status can be used, but either it has increased replication delay or one of its HA frontends is unavailable.
- FAILURE: Replication for the instance has failed and should no longer be used.

C	Configured instances											
ID	Instance name	Instance state ?	Zabbix version	Connection state ?	Latency (min/avg/max)	Last contacted	Replication state ?	Replicated until	Average replication duration			
1	Zabbix Instance 01	Active	7.0.18	Online (2 / 2 nodes)	22 ms / 25.2 ms / 27 ms	2s ago	Idle	9s ago	264.1ms 🕓			
2	Zabbix Instance 02	Degraded	7.0.18	Degraded (1 / 2 nodes) i	15 ms / 17 ms / 19 ms	2s ago	Idle	7s ago	270.4ms 🕓			
3	Zabbix Instance 03	Active	7.0.18	Online (2 / 2 nodes)	23 ms / 24.7 ms / 27 ms	2s ago	Idle	7s ago	271.1ms 🕓			

Overview of GPV-Server states

A GPV Server can have one of the following states:


- INITIALIZING: One or more instances on the GPV server are currently being initialized. Another GPV server with ACTIVE status should be preferred, if available.
- ACTIVE: All instances have ACTIVE status. The server is operating normally.
- DEGRADED: One or more instances have either DEGRADED or FAILURE status.
 At least one instance has a status other than FAILURE.
- FAILURE: Replication for the instance has failed and should no longer be used.

Degraded					
843e6df257bfb71f					
1s / 5s 777.78ms / 9s					
245.5ms / 264.68ms / 272.7ms					

When one Zabbix server is not enough

Zabbix redundant HA setups

Overview - Zabbix HA and Geo redundancy

High Availability and (Geo) redundancy can be implemented in different areas of the Zabbix software stack:

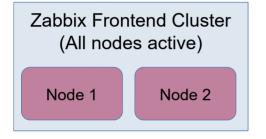
HA Zabbix Database Service:

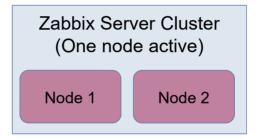
Database Cluster with a minimum of 3 Nodes depending on setup

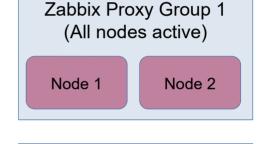
HA Zabbix Server:

Zabbix Server Cluster (>= V6.0) with a minimum of 2 Nodes

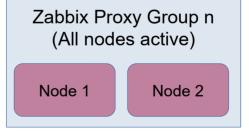
HA Zabbix Frontend:

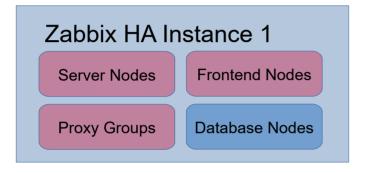

Multiple Webserver running the Zabbix Frontend

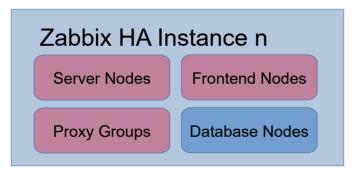

HA Zabbix Proxies:

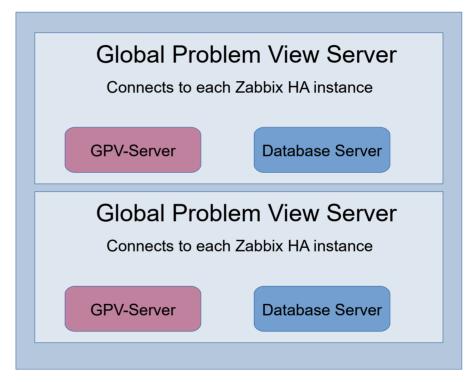

Zabbix Proxy Groups (>= V7.0) with a minimum of 2 Zabbix Proxies per group



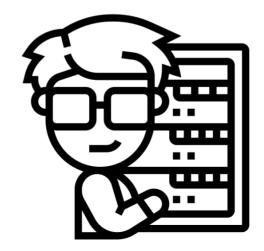

Example of a HA setup for one Zabbix instance







Global problem view across multiple HA instances



Multiple Problem View Servers

When one Zabbix server is not enough

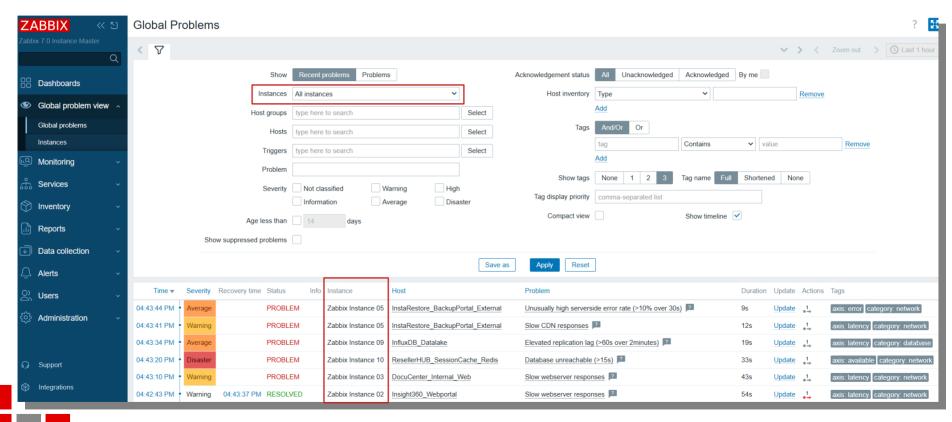
GPV-Server implementation

GPV-Server Configuration

GPV-Server Zabbix instance configuration

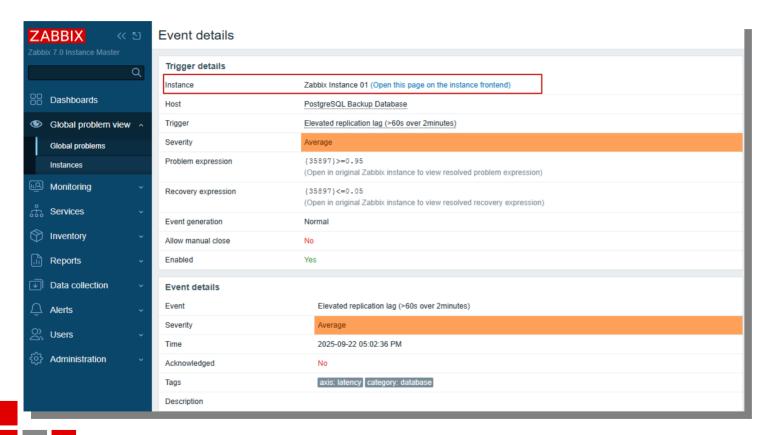
```
instances:
 - name: 7abbix Instance 01
  id: 1
  apis:
   - https://zabbix7-web-01/api jsonrpc.php
  frontend: https://zabbix7-web-01
 - name: Zabbix Instance 02
  id: 2
  apis:
   - https://zabbix7-web-02/api jsonrpc.php
  frontend: https://zabbix7-web-02
```


GPV-Server Frontend Modules

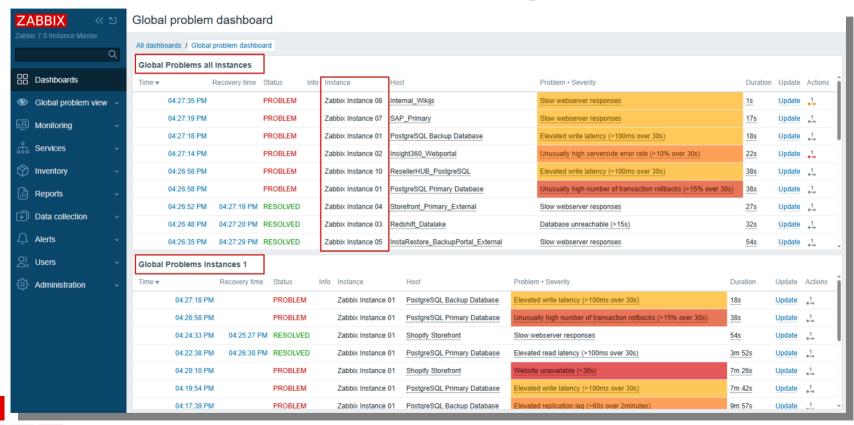

There are two modules that can be installed on any Zabbix frontend, that should act as a master server:

- **Global problem view**: Adds a new top level menu "Global problem view" with two submenus to access the global problems and also the state on instances and GPV-Server.
- Global problem widget: Adds a new dashboard widget that can be used to show all problems in a dashboard, or filter by a given instance.

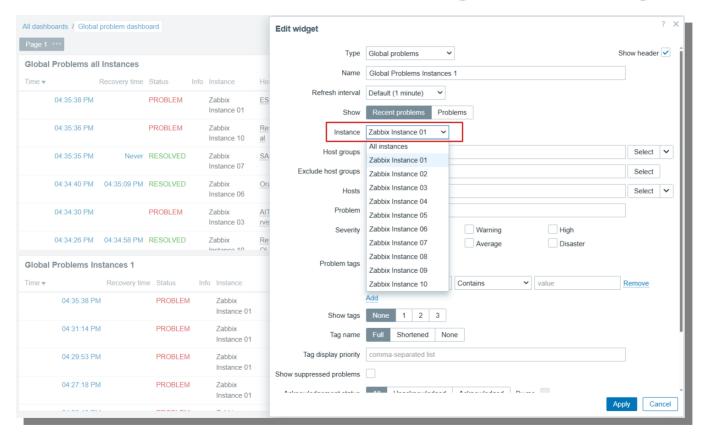
000	Users	~	Geomap	1.0	Zabbix	Displays hosts as markers on a geographical map.
£633	Administration	^	Global problem view	1.0	IntelliTrend GmbH	View problems of multiple Zabbix servers, using the global problem view server
	General	>	Global problem widget	1.0	IntelliTrend GmbH	A problem list widget for multiple Zabbix servers, using the global problem view server
	Audit log		Graph	1.0	Zabbix	Displays data of up to 50 items as line, points, staircase, or bar charts.

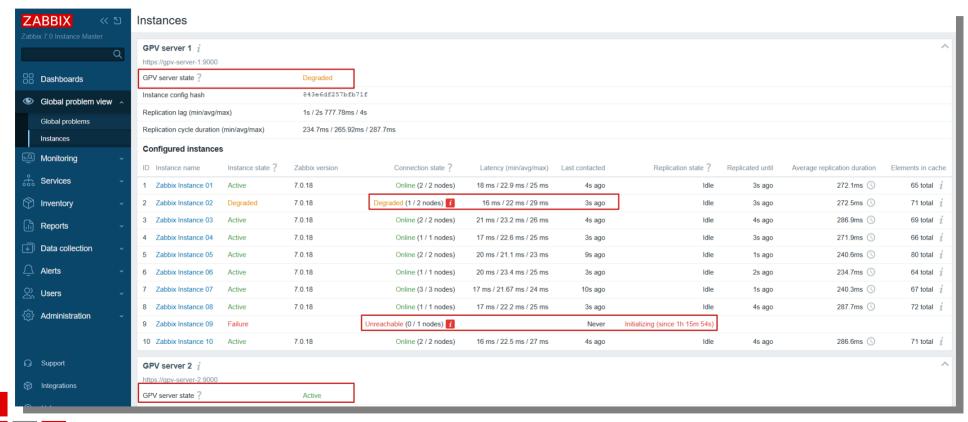

GPV-Server Frontend Module – Problem overview

The global problem view page mimics the orginal problem page and includes an instance selector.


GPV-Server Frontend Module – Problem details

The global problem details page mimics the orginal page and includes the instance information with a link to the instance


GPV-Server Dashboard Widget

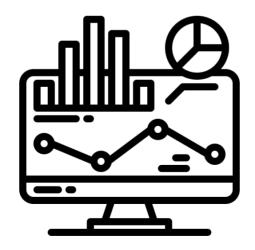

GPV-Server dashboard widget allows to create Zabbix Instance specific problem dashboards. Can be combined with any other widget.

GPV-Server Dashboard Widget Settings

GPV-Server Instance overview

GPV-Server Monitoring API

```
"result": {
  "gpv_server_state": "active",
  "error": "",
  "instance config hash": "8486665c2ebd3dcf",
  "instances": [
      "name": "Zabbix Instance 01",
      "instance_state": "active",
      "loop_state": "cooldown",
      "frontend_url": "https://zabbix7-web-01",
      "connection_state": "connected",
      "connection error": "",
      "zabbix version": "7.0.18",
      "api urls": [
        "https://zabbix7-web-01/api isonrpc.php"
      "recent_loop_durations": [
            225, 262, 255, 265, 244, 266, 260, 261, 282
      ],
"id": 1,
      "init started at": 1758468831,
      "replicated until": 1758526497,
      "replicated until_event_id": 42169,
      "replication lag": 9,
      "last loop duration": 282,
      "avg loop duration": 257.1,
      "last seen": 1758526504,
      "avg node latency": 23.4,
      "best node latency": 23,
      "worst node latency": 25,
      "nodes connected": 2
```



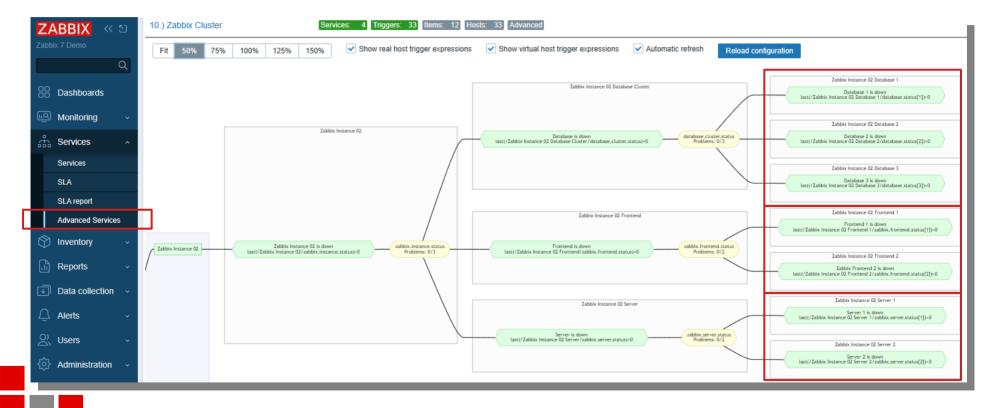
HTTP JSON-RPC Endpoint provides metrics about the GPV-Server

When one Zabbix server is not enough

Single pane of glass

Single pane of glass

A Global View Server can serve as the basis for a central overview for **IT System Integrators** and **MSPs** ,who use many different individual Zabbix Servers for their customers.


Those setups will also include:

- SSO: Single Sign-On to simply access to all instances. To support OAuth2.0 we had to
 develop a "Zabbix OAuth to SAML Proxy" that automatically authenticates users with a
 valid OAuth session by acting as a SAML identity provider for Zabbix.
- Instance Monitoring: Health-Check of each Zabbix instance.
- Service Monitoring: Health-Check of an entire Zabbix service across many instances.

Zabbix as a Service on the Master

PREMIUM PARTNER

Zabbix Service - Anomaly Detection using Al

Check for anomalies on each Zabbix instance via the master using individual trained models.

PREMIUM PARTNER

Dashboard - Utilization of Zabbix instances

Zabbix Instances														\$
Host	Address	Server version	Status	Required performance	Config cach	е	Value cache		History index	cache	History write	cache	Trend write	cache
Zabbix Instance 01	10.0.120.1:10051	7.0.18	Up (1)	7481.1581 NVPS		1.0719 %		5.099 %		0.4515 %		0 %		2.9154 %
Zabbix Instance 02	10.0.120.2:10051	7.0.18	Up (1)	5350.1731 NVPS	1000000	3.1955 %		2.0749 %		13.9879 %		0.04994 %		0.0036 %
Zabbix Instance 03	10.0.120.3:10051	7.0.18	Up (1)	3362.1242 NVPS		2.5922 %		2.1029 %		0.4517 %		0.00639 %		0.0288 %
Zabbix Instance 04	10.0.120.4:10051	7.0.18	Up (1)	3945.6279 NVPS		1.2935 %		32.2604 %		1.9426 %	•	0.01783 %		23.8251 %
Zabbix Instance 05	10.0.120.5:10051	7.0.18	Up (1)	5431.3414 NVPS		0.3193 %		7.0062 %		0.0608 %		0 %		12.7068 %
Zabbix Instance 06	10.0.120.6:10051	7.0.18	Up (1)	4964.5955 NVPS		2.193 %		0.4568 %		0.06178 %		0.000082 %		0.711 %
Zabbix Instance 07	10.0.120.7:10051	7.0.18	Up (1)	7012.5817 NVPS		0.3698 %		0.1937 %		0.7519 %		0.01135 %		0.0288 %
Zabbix Instance 08	10.0.120.8:10051	7.0.18	Up (1)	6502.3986 NVPS		1.1294 %		0.6217 %		0.6142 %		0 %		4.2791 %
Zabbix Instance 09	10.0.120.9:10051	7.0.18	Up (1)	7528.3964 NVPS		15.2103 %		5.5564 %		0.3453 %	•	0.5937 %		0.762 %
Zabbix Instance 10	10.0.120.10:10051	7.0.18	Up (1)	3477.6317 NVPS		0.05022 %		15.0332 %		0.4471 %		0 %		0.8389 %

Zabbix meets Al

Summary

Zabbix at Scale – Summary

- ► Any "mega-server" can exhaust CPU, RAM, I/O or network it can't be extended indefinitely.
- ▶ Distributing the load across multiple Zabbix Server is an option.
- ► Multiple Zabbix Servers are aggregated into one Global Problem.
- ► This allows to scale one Zabbix Server into many Zabbix instances, but keeps a single pane of glass.
- ► The concept of a global view can also be used by MSP's or IT System Integrators, where many customers use numerous Zabbix Servers.
- ► SSO (OAuth 2.0 / SAML) lets users authenticate once and instantly jump into the problem's source.
- ► The server designated as the Zabbix Master Server which provides the global view, can also be used to monitor the individual Zabbix Instances.

Zabbix at Scale

Global Problem View for Multi-Instance Environments

Thank You!

IntelliTrend GmbH

Contact: Wolfgang Alper

wolfgang.alper@intellitrend.de