
Closing the State Gap in Large-Scale Network
Monitoring

v

From Assumption to Assurance

A system that looked healthy—until it wasn’t
Dell | 20k+ devices | global footprint

Logs: plenty of signals, no alarms

Dashboards: all green, SLIs on target

Backups: nightly, tested, versioned

Still got blindsided.

Runtime state can drift even when configs are
“compliant.”

Dashboards show symptoms; they don’t prove
intent is satisfied.

Backups capture text, not behavior.
“not all risk lives in logs, and not all
change happens in config”

Where we look vs where problems hide
Misplaced confidence creates blind spots

Risk Area We think it lives in… Reality

Unauthorized changes Syslog CLI / live device

Routing failure Config Runtime FIB / session state

Compliance drift Git repo Manual edits / post-deploy “fix”

App behavior Code Side-effects in infra

TLS breakage Cert store Live handshake / chain validation

Capacity exhaustion Dashboard SLAs Queue depth / kernel counters

Security posture Policy docs Effective ACLs on path

HA readiness Design diagram Failover time under load

So where does the truth live?

Git ≠ ground truth.

Green graphs ≠ correct behavior.

Backups capture text, not outcomes.

Config (Intent) • State • Observability

The Trifecta of Truth

A Configuration (Your Intent)

IaC specs

Device/service configs

TF templates

B State
(how it’s running right now)

Routing/FIB,

Kernel/queue counters

CPU, RAM, Disk

C Observability (up the stack, end-to-

end, UX)

Metrics/logs/traces,
synthetics,

API journey timings,

Business KPIs

B

Config ∩ State —
Conformance
What’s declared is what’s
realized on the
box/cluster.

A
Config ∩ Observability — Intent
Evidence
SLOs/checks directly prove the
outcomes you intended.

C

State ∩ Observability — Explainability
Signals faithfully reflect internal runtime
(no blind spots).

Config • State • Observability

The Trifecta of Truth

Config ∩ State ∩ Observability — Continuous Assurance
(Verified Outcomes)

Design → realization → user-visible proof, all aligned.

“If it isn’t realized in state and proven in observability, it
doesn’t matter that it’s written in config.” - Stephen Stack

Config • State • Observability

The Trifecta of Truth

Config ∩ State — Conformance tests
“Is the route/interface/policy actually installed and active?”
Auto-fail CI/CD if post-deploy state checks don’t match intent.

State ∩ Observability — Explainability tests
“Do our metrics/traces/logs move when state changes?” (e.g., drop a route, see latency/availability impact as
expected).
Synthetic probes cover each critical failure mode.

Config ∩ Observability — Intent evidence
SLOs derived from config/policy (e.g., MTTR for a HA policy, path budget for QoS class).
Dashboards organize by intent (policies/services), not only by components.

All three — Continuous assurance
Nightly (or per-change) job: render config → apply → assert state → verify SLO/synthetic.
Store pass/fail as an artifact next to the PR.

✓ This is the lens we should use to evaluate our monitoring.

Overlaps you must verify (this is where risk is reduced):

The Trifecta of Truth

When Config and State don’t
meet, money burns

The Cost of Missing the
Middle

When Config and State don’t meet, money burns

Outage cost = incidents × duration × blended $/hr → 30 × (8 - 24) × $1M = $20–$30M

How do you solve this?

outages / year

30
hrs average downtime

8-24
blended cost/outage

$1M
per year impact

$20 - $30M

The Cost of Missing the Middle

Zoom-In: Config ∩ State (One Simple Example)
B ∩ C = Config ∩ State (Applied Config ≠ Runtime State)

Scenario :
Customer channel: Global Contact Centers on Black Friday
Readiness Change: Prioritize voice (EF) on WAN egress.
Runtime reality (State): Class-map didn’t match; EF
queue/counters stayed 0; DSCP marks stripped at edge.
What we saw (Obs): Wall of green. No voice synthetic.
Tickets spike at 0800 CST.

Outcome:
Recurring “evening voice” incidents → reduced to zero
Voice Synesthetics became standard monitoring deployments for CCs
Never happened again on Black Friday

Fix pattern (+6 hrs):
Post-deploy state assertions:

EF queue depth > 0 during a test call
DSCP 46 on egress packets
Policy/class-map hit counters > 0

Gate the change: Apply simple class map change to
correct

Add one synthetic: 60-sec voice MOS probe across CC
WAN Links

Config ∩ State = Conformance.

Components work; interactions fail

Config clean.
State aligned.
Dashboards green.

Still failing? That’s an
interaction problem

Why systems fail when they get too clever
“Catastrophe requires multiple failures — single point failures are not
enough.” — Richard Cook, How Complex Systems Fail

Why is it that methods used to build small and medium sized systems do not work
when applied to complex systems? — Keepence & Mannion, ECBS ’97

This is where config, state, and monitoring can all be “right”—and the system still
fails.

We need observability of interactions (dependencies, handoffs, timing), not just
components.

In complex systems, failures seldom reduce to a single component; they emerge
from unanticipated interactions — Keepence & Mannion, ECBS ’97

https://how.complexsystems.fail/

Not just watchful — extendable
and verifiable

Zabbix for
Active Assurance

Config Validation Example (A ∩ B)
Config capture • Runtime state • Mismatch triggers

B

A Config

State

Intent / Desired Config (A)

Apache must be configured to serve traffic
over HTTPS

API endpoint /v1/status should respond
with 200

TLS 1.2 must be enforced and checked

User Experience Checks

Config Validation Example (A ∩ B)
Config capture • Runtime state • Mismatch triggers

Config

State

Intent / Desired Config (A)

Apache is “configured”

TLS 1.2 is Configured

Other Encryption protocols not
configured

Config Validation Example (A ∩ B)
Config capture • Runtime state • Mismatch triggers

Config

State

State Checks (B)

Web Scenario is Configured with
triggers

SSL checks disabled

200 status returned

Config Validation Example (A ∩ B)
Config capture • Runtime state • Mismatch triggers

Config

State

Observed State (Zabbix
Monitoring)

TLS certificate is expired

Port 443 is open, but API returns
200

May see Latency spikes to 2 - 3
seconds under load.

Web scenario does not fail

Config Validation Example (A ∩ B)
Config capture • Runtime state • Mismatch triggers

Lesson: Config is not proof. Config is intent. Only state tells the truth.

Outcome

NOC sees “Apache is active” → no immediate alert

Users report timeouts or slowness

TLS errors in browsers

RCA takes several hours due to config-state blind spot

Runtime State Validation (B ∩ C)
The DB is running — so why is everything slow?

Config ∩ State —
Conformance
What’s declared is
what’s realized on the
box/cluster.

01

B

C

State

Observability

State/ Observability (B)

PGSQL is up and running

DB Is responding to queries

User complain of app response
times

Runtime State Validation (B ∩ C)
The DB is running — so why is everything slow?

State/ Observability (B)

PostgreSQL installed

Correct DB, schema, and tables
present

Connection string is configured
in app

Service marked “running”

Runtime State Validation (B ∩ C)
The DB is running — so why is everything slow?

Observed State (C)

This time we know something is
wrong

Users complain

Investigation Begins

… Several Hours later

Runtime State Validation (B ∩ C)
The DB is running — so why is everything slow?

IOPS consistently over
90%

Lesson: Running isn’t the same as healthy. Healthy isn’t the same as performant.

Outcome

Alerts are missed (DB “running” = OK)

App response times increase

Users experience login timeouts

RCA points to Failing Disk, High IOPS on remote
NAS

Intent vs Observed State (A ∩ C)
The routing config looks good — but packets don’t lie.

C

B

Observability

Config
Config (A) Intent

BGP peers defined

AS Path & prefixes configured

Route maps applied correctly

Expected route to
192.168.1.0/24 via AS65001

Intent vs Observed State (A ∩ C)

Config
Config (A) Intent

Configured correctly

Peers are UP

Routes exist

Intent vs Observed State (A ∩ C)

Config

Observed state ≠ intended path

Failover path is active
Traffic diverged silently

Observed State (C)

Path latency to 192.0.2.10 =
450ms Frequently

Unexpected AS in traceroute
path

FIB contains alternate next-hop

Packets going through backup ISP

Intent vs Observed State (A ∩ C)

Config

Lesson: Routing is intent — but packets reveal the truth.

Expose silent failover, routing drift, and degraded user experience — even when everything
looks green.

Outcome

Network config “looks fine”

State reports peers up

But latency is degraded

No alerts without intent-state correlation

Zabbix is not just watchful — it’s extendable and verifiable.

From Monitoring to Validation
Config • Runtime state • Experience

Config ∩ State ∩ Observed
Where the gaps hide, money burns

A Configuration (intent & configuration)

B State (how it’s running right now C Observability (up the stack, end-to-end, UX)

B

Config ∩ State —
Conformance
What’s declared is what’s
realized on the
box/cluster.

A
Config ∩ Observability — Intent
Evidence
SLOs/checks directly prove the
outcomes you intended.

C

State ∩ Observability — Explainability
Signals faithfully reflect internal runtime (no
blind spots).

Design it, run it, prove it — end
to end.

Full Circle: From Config to
Customer Outcomes

What good looks like
Outcomes of aligning Config • State • Observability

Behaviour shifts

Firefighting → Validation loop

Component dashboards → Intent checks

Alerts → Assertions + SLOs

Ad hoc fixes → Per-change state tests

This is what mature observability unlocks.

reduction outages

70%
MTTR down to less

than 1 hr

↓1 Hr
AR costs avoided

$30M
Config, State, Observability aligned

Zero Surprises

Final Question: Why It Breaks at Scale
“Why don’t the methods that work for small/medium systems work in
complex systems?” — Keepence & Mannion, ECBS ’97

▪ Interaction explosion: more components ⇒more unexpected behaviors at the joins.

▪ Tight coupling & timing: queues, retries, backoffs, elections—small delays amplify.

▪ Partial visibility: each tool sees a slice; no single source captures intent→state→UX.

▪ Asymmetric ops: config converges slower than state changes; observability lags outcomes.

“In complex systems, failures rarely map to one component—they emerge from unanticipated
interactions.” — Keepence & Mannion (1997)

Final Question: Why It Breaks at Scale
“Why don’t the methods that work for small/medium systems work in
complex systems?” — Keepence & Mannion, ECBS ’97

A Configuration (intent & configuration)

B State (how it’s running right now C Observability (up the stack, end-to-end, UX)

B

Config ∩ State —
Conformance
What’s declared is what’s
realized on the
box/cluster.

A
Config ∩ Observability — Intent
Evidence
SLOs/checks directly prove the
outcomes you intended.

C

State ∩ Observability — Explainability
Signals faithfully reflect internal runtime (no
blind spots).

Complex Systems
Keepence, et al. 97

www.rconfig.com/complexsystems

	Slide 1: Closing the State Gap in Large-Scale Network Monitoring v From Assumption to Assurance
	Slide 2
	Slide 3
	Slide 4: The Trifecta of Truth
	Slide 5: The Trifecta of Truth
	Slide 6
	Slide 7
	Slide 8: The Cost of Missing the Middle
	Slide 9: The Cost of Missing the Middle
	Slide 10
	Slide 11: Config clean. State aligned. Dashboards green. Still failing? That’s an interaction problem
	Slide 12
	Slide 13: Zabbix for Active Assurance
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Full Circle: From Config to Customer Outcomes
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Complex Systems Keepence, et al. 97 www.rconfig.com/complexsystems
	Slide 34
	Slide 35

