
1

Fighting false positives and
notification floods
in Zabbix distributed environments

Nicola Mauri • Bitech SpA

2

Nicola Mauri 
Monitoring and Security Consultant

nm@nicolamauri.it
@nicolamauri www.bitech.it

✉

A typical
MSP

scenario

Our scenario

SERVER PROXY

PROXY

PROXY

Customer 1

Customer 2

Customer 3

....

Managed Services  
Provider

WAN

Zabbix in MSP scenarios

•Monitoring-as-a-Service (MaaS) model

• 1 Zabbix Server for several customers

•Active Proxies connecting through WAN

•Non-technical users receive alerts and need to take
actions

Why fighting them?

•False positives undermine
monitoring system reputation
among your users

•Notification floods make your
monitoring system inefficient,
often when you need it most

How do you determine if a
server host is alive?

7

Agent monitoring: the default way

AgentServer agent.ping

(1)

Agent monitoring: the default way

• Better than pinging:  
it catches a lot of problems with one single check.

• But it doesn't tell us which problem we have

Host is down ➙

Host is up, agent is down ➙

Host is up, agent is unresponsive ➙

Proxy

Distributed environments

Agent

Agent

Agent

Agent

Agent

Distributed environments

agent.ping.nodata()

also triggers upon non-agent problems:

• Zabbix Proxy is down
• Zabbix Server has connectivity issues
• Zabbix Server has performance issues

Solutions

• Triggers dependency?

• Implicit trigger dependency (ZBXNEXT-1891)

• Hosts dependency (Zabbix > 5.0)

• Event correlation?

Agent monitoring: a combined approach

AgentServer

Idea: using multiple checks to more precisely determine
what's happening

icmpping

net.tcp.service[tcp,,10050]

agent.ping

Agent monitoring: a combined approach

ICMP TCP 10050 agent.ping Host status

✘ ✘ Host is unreacheable

✔ ✘ Agent service is down

✔ ✔ nodata System is overloaded or frozen

nodata nodata nodata Unknown, probably not a host issue

✔ ✔ ✔ A great day for this agent

✘ ✔ ✔ Ok (a nasty network admin simply blocked our ICMPs)

Let’s put all these information together:

Agent monitoring: a combined approach

📩
✘ ✘ Host is unreacheable 👤 Networking Team

✔ ✘ Agent service is down 👤 Monitoring Team

✔ ✔ • System is overloaded or frozen 👤 System Admins

• • • Unknown, probably not an agent issue none

✔ ✔ ✔ A great day for this agent –

✘ ✔ ✔ Ok, a nasty network admin simply blocked our ICMPs –

Separate triggers allow sending notifications to the right people:

1. “Host is unreacheable” trigger

ICMP TCP agent.ping

✘ ✘ Host is unreacheable

Trigger:

{host:icmpping.max(3m)}=0  
and  
{host:net.tcp.service[tcp,,10050].max(3m)}=0

On failures, icmpping and net.tcp.service return a '0' value, so you
don’t need to use nodata().

2. “Agent service is down” trigger

ICMP TCP agent.ping

✔ ✘
 Agent service is down  
 (host and its services may be up)

Trigger expression:

{host:net.tcp.service[tcp,,10050].max(30m)}=0

Depends on trigger:

"Host is unreacheable"

3. “System is overloaded or freezed”

ICMP TCP agent.ping

✔ ✔ nodata System is overloaded or frozen

• We can connect to the agent TCP port  
→ host must be up, agent must be up.

• We do have data for icmp item  
→ the proxy/server chain is working.

• We have no data from agent  
→ the agent is unresponsive: the system must be blocked or overloaded.

3. “System is overloaded or freezed”

ICMP TCP agent.ping

✔ ✔ nodata System is overloaded or frozen

Problem expression:

{host:net.tcp.service[tcp,,10050].min(1h)}=1  
and {host:icmpping.nodata(3h)}=0  
and {host:agent.ping.nodata(3h)}=1

Recovery expression:

{host:agent.ping.count(30m,1)}>10

💡 Choose large time intervals to avoid flapping and some unobvious race conditions.

How do you detect  
Zabbix proxies failures?

20

Detecting active proxies failures

Agent

Agent

Agent

Agent

Agent

SERVER
PROXY

A remote active proxy often sits behind a firewall and doesn't
accept direct connections from Zabbix Server.

If a proxy is unreachable, we simply observe a lack of data.

Detecting active proxies failures

Internal item:  
(not used in default templates)

 zabbix[proxy,{$PROXY_NAME},lastaccess]

Agent

Agent

Agent

Agent

Agent

Server
Proxy

“No connection from proxy” trigger

lastaccess Scenario

>1 min No connection from proxy

Trigger expression:

{proxy1:zabbix[proxy,{$PROXY_NAME},lastaccess].fuzzytime(1m)}=0

 
It could mean:

• Proxy host is down
• Proxy service is stopped
• Proxy site is unreacheable (network or power outage)

Remote proxies: best practices

1. Keep the proxy host itself monitored, using agent.

2. lastaccess requires proxy name parameter. Use macros and
ensure that item gets evaluated, i.e.:

{myproxy1:zabbix[proxy,{$PROXY_NAME},lastaccess].nodata(24h)}=1 
=> “Cannot determine proxy last access time”

3. Monitor proxy connectivity: ping its router from Zabbix Server, for
rapid troubleshooting.

4. Use passive proxies, if security policies allow you.

How do you handle  
Zabbix Server  

connectivity issues?

25

Zabbix Server
connectivity

issues

SERVER PROXY

PROXY

PROXY

No connection from proxy

No connection from proxy

No connection from proxy

Zabbix Server
connectivity

issues

Idea: auto-detecting
connectivity problems and
preventing alerts to be fired

HOST

SERVER

Zabbix Server
connectivity

issues

HOST

SERVER

LAN
Gateway

WAN
Gateway

WAN Host
8.8.8.8

icmpping

{zbxsrv:icmpping[{$WAN_GATEWAY}].last()}=0  
and  
{zbxsrv:icmpping[{$WAN_HOST}].last()}=0

 Zabbix Server is network isolated!

Zabbix Server
connectivity

issues

Template App Zabbix Server

 Zabbix Server is network isolated!

Template App Zabbix Proxy

 No connection from proxy

Make proxy trigger
dependent on this trigger in

order to avoid misleading
notifications.

(In theory an isolated server should not be able to send notifications. However mail
notifications might be queued and sent later when connectivity is restored)

Conclusions
• Simple yet robust approach

• Tested on a wide range of deployments for 3+ years

• All logic stored into templates  
(no manual configuration or tuning needed)  

Main benefits:

• More precise notifications

• Reduces false positives

• Prevents alert floods on distributed environments

 
Lessons learned

in MSP environments

31

1. Do not overwhelm users

• PKI: Number of alerts /per user /per day

• Recommended (human-sustainable): < 20

✉
✉

✉

✉ ✉✉

✉

✉

2. Inform users about changes

• Users expect a predictable and consistent behavior

• Keep them informed about changes to monitoring
service:

• New hosts (auto-registration)

• New discovered entities (LLD)

• New triggers

• New thresholds

3. Adopt a consistent severity classification

Data loss ➡ Disaster Immediately (too late?)

Service failure ➡ High Immediately

Imminent service failure ➡ Average As soon as possible

Unusual condition (no impact on services) ➡ Warning On daily/weekly basis

Non-problem event to keep track ➡ Information –

Internal monitoring event ➡ Not classified –

Applied thorough all your templates • Based on “objective” criteria • Associable to intervention priorities

For example:

CRITERIA DEFINITION SEVERITY EXPECTED RESPONSE TIME

35

Nicola Mauri 
Monitoring and Security Consultant

nm@nicolamauri.it
@nicolamauri

www.bitech.it
✉

Thank you!

