
TUNING OF POSTGRESQL
FOR ZABBIX
ARTURS LONTONS
TECHNICAL SUPPORT ENGINEER

CONFIGURING ZABBIX FOR
POSTGRESQL

ENABLING ZABBIX FOR POSTGRESQL

DATABASE BACKEND

01

INITIAL ZABBIX CONFIGURATION

Open the zabbix_server.conf file:

Be careful. By default preconfigured with localhost!

Option: DBHost

Database host name.

If set to localhost, socket is used for MySQL.

If set to empty string, socket is used for PostgreSQL.

#

Mandatory: no

Default:

DBHost=

INITIAL ZABBIX CONFIGURATION

Next, specify your DB name:

And specify your DBSchema:

Empty or commented out value will also reference the public schema!

Option: DBName

Database name.

DBName=zabbix

Option: DBSchema

Schema name. Used for PostgreSQL.

DBSchema=public

INITIAL ZABBIX CONFIGURATION

List all of the available schemas:

Show Zabbix table schema:

zabbix-> \dn

List of schemas

Name | Owner

--------+----------

public | postgres

zabbix-> \dt

List of relations

Schema | Name | Type | Owner

--------+----------------------------+-------+--------

public | acknowledges | table | zabbix

public | actions | table | zabbix

…

INITIAL ZABBIX CONFIGURATION

Specify DBUser and DBPassword

Option: DBUser

Database user.

DBUser=zabbix

Option: DBPassword

Database password.

DBPassword=zabbix

INITIAL ZABBIX CONFIGURATION

Specify database port:

Database port can be either empty or commented out. Default port – 5432 will be

used.

Custom port for DB backend can be specified in the DB configuration file:

Option: DBPort

Database port when not using local socket.DBUser=zabbix

DBPort=5432

#--

CONNECTIONS AND AUTHENTICATION

#--

port = 5433

INITIAL ZABBIX CONFIGURATION - FRONTEND

Specify DB credentials for frontend connections:

INITIAL ZABBIX CONFIGURATION - FRONTEND

The cause for this issue can be found in pg_hba.conf:

"local" is for Unix domain socket connections only

local all all peer

IPv4 local connections:
host all all 127.0.0.1/32 ident
IPv6 local connections:

host all all ::1/128 ident

INITIAL ZABBIX CONFIGURATION - FRONTEND

We need to change the authentication method from ident, to md5:

Note that we also restricted the connection permissions to our specific database

and user. It is also possible to restrict the address.

"local" is for Unix domain socket connections only

local all all peer

IPv4 local connections:
host zabbix zabbix 127.0.0.1/32 md5
IPv6 local connections:

host all all ::1/128 ident

TUNING POSTGRESQL FOR
ZABBIX WORKLOADS

MODIFIYNG THE POSTGRESQL DB

CONFIGURATION FOR ZABBIX

SPECIFIC SQL WORKLOADS

02

TUNING ZABBIX GATHERING PROCESSES

Depending on the size of our instance, we need change the number of different

internal processes:

StartPollers

StartPingers

StartTrappers

StartDBSyncers

And many others!

TUNING ZABBIX GATHERING PROCESSES

Seems simple enough, right? Let’s raise our pollers to 200! (Imagine this is a large

instance)

[Z3001] connection to database 'zabbix' failed: [0] FATAL: remaining

connection slots are reserved for non-replication superuser connections

database is down: reconnecting in 10 seconds

Option: StartPollers

StarPollers=200

ADJUST MAX_CONNECTIONS

Looks like we have exhausted our max_connections. But how come?

Only 4 History syncer processes connecting to the DB

Looks like pollers connect to the DB too!

Pollers do connect to the DB! (Fixed in 5.4 - ZBXNEXT-782)

Option: StartPollers

StarPollers=200

Option: StartDBSyncers

StartDBSyncers=4

ADJUST MAX_CONNECTIONS (2)

Don’t forget about the Web Backend!

For php-fpm:

That is extra 50 potential connections to the DB!

Estimate the max connections accordingly:

pm.max_children = 50

max_connections = 300

KEY PERFORMANCE CONSIDERATIONS

What about other parameters – Buffers, caches, workers etc?

It can be very complex to estimate these!

Database size and hardware performance has a very large impact on the optimal

configuration parameters!

Most precise results come from trial and error approaches – but this is also very

time consuming!

We can also go by general best practice

Third party tools are available for generating the potential configuration parameters

KEY PERFORMANCE CONSIDERATIONS

We can estimate these database configuration parameters by using best practice

approaches

Or we can also use third party tools. For example – PGTune:

TUNING POSTGRESQL PARAMETERS

Let’s take a look at how we should tune PostgreSQL buffers and caches:

shared_buffers - 25% of your RAM. PostgreSQL data buffer.

effective_cache_size - How much memory you expected to be available on the OS. Used

for query planning! Usually around 50% of your RAM.

huge_pages – force, try or disable using huge pages.

Using huge pages reduces the overhead of page management

This is highly recommended in very many PostgreSQL use cases!

TUNING POSTGRESQL PARAMETERS

Next, let’s configure memory related parameters

maintenance_work_mem - memory used by maintenance procedures such as

vacuums, index creation, alter table, etc.

Maintenance operations like vacuums should be performed on a scheduled basis and

also before performing an upgrade.

work_mem - used for in memory sorts. This is defined per a single sort.

max_connections*work_mem – potential memory ceiling for sorts.

TUNING POSTGRESQL PARAMETERS

When it comes to concurrency, worker processes can help us out

max_worker_processes – workers for maintenance and parallel queries

max_parallel_workers – max workers for parallel operations

max_parallel_workers_per_gather – max parallel workers per query

max_parallel_maintenance_workers – max parallel workers for maintenance tasks

Max worker processes/parallel workers = count of CPU cores

Workers per gather/Maintenance workers = Depending on count of cores. Usuaully ½ or ¼

.

ENABLING AND CONFIGURING VACUUM

To clean up dead touples and free up disk space, vacuum must be executed

We can automate this by configuring autovacuum

.autovacuum=on #turn on autovacuum

vacuum_cost_page_hit = 1 #cost of work if page in buffer

vacuum_cost_page_miss = 10 #cost of work if page not in buffer

vacuum_cost_page_dirty = 20 #cost of work if page is cleaned up

autovacuum_vacuum_threshold = 50 #threshold to trigger vacuum

autovacuum_vacuum_scale_factor = 0.01

autovacuum_vacuum_cost_delay = 20ms #delay after reaching limit

autovacuum_vacuum_cost_limit = 3000 #limit of vacuum cost

autovacuum_max_workers = 6 #number of vacuum processes

ENABLING AND CONFIGURING VACUUM

The cost limit is global – applies to all workers!

Each worker gets only 1/autovacuum_max_workers of the total cost limit

Increasing the cost limit is a simple way to improve vacuum performance (if the

hardware limitations permit it)

.

THANK YOU!

	Tuning of PostgreSQL for Zabbix
	Configuring zabbix for postgresql
	Initial zabbix configuration
	Initial zabbix configuration
	Initial zabbix configuration
	Initial zabbix configuration
	Initial zabbix configuration
	Initial zabbix configuration - frontend
	Initial zabbix configuration - frontend
	Initial zabbix configuration - frontend
	Tuning postgresql for zabbix workloads
	Tuning zabbix gathering processes
	Tuning zabbix gathering processes
	Adjust max_connections
	Adjust max_connections (2)
	Key performance considerations
	Key performance considerations
	Tuning postgresql parameters
	Tuning postgresql parameters
	Tuning postgresql parameters
	Enabling and configuring vacuum
	Enabling and configuring vacuum
	THANK YOU!

