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BIGGEST TABLES

history

history_uint

history_str

history_text

history_log

events



MASURE SIZE OF TABLES (MYSQL)

SELECT table_name,
table_rows,
data_length,
index_length,
round(((data_length + index_length) / 1024 / 1024 / 1024),2) "Size in GB"

FROM information_schema.tables
WHERE table_schema = "zabbix"
ORDER BY round(((data_length + index_length) / 1024 / 1024 / 1024),2) DESC
LIMIT 8;



MEASURE SIZE OF TABLES (POSTGRESQL)

In case if TimescalDB extension in place, it will tell the biggest hypertables (AKA chunks)

SELECT *, pg_size_pretty(total_bytes) AS total , pg_size_pretty(index_bytes) AS index ,
pg_size_pretty(toast_bytes) AS toast , pg_size_pretty(table_bytes) AS table

FROM (SELECT *, total_bytes-index_bytes-coalesce(toast_bytes, 0) AS table_bytes
FROM (SELECT c.oid,

nspname AS table_schema,
relname AS table_name ,
c.reltuples AS row_estimate ,
pg_total_relation_size(c.oid) AS total_bytes ,
pg_indexes_size(c.oid) AS index_bytes ,
pg_total_relation_size(reltoastrelid) AS toast_bytes

FROM pg_class c
LEFT JOIN pg_namespace n ON n.oid = c.relnamespace
WHERE relkind = 'r' ) a) a;



BUILD IN WAY TO TRACK INCOMING FLOW



BIGGEST DATA COMING TO INSTANCE RIGHT NOW

SELECT hosts.host,items.itemid,items.key_,
COUNT(history_log.itemid)  AS 'count', AVG(LENGTH(history_log.value)) AS 'avg size',
(COUNT(history_log.itemid) * AVG(LENGTH(history_log.value))) AS 'Count x AVG'
FROM history_log
JOIN items ON (items.itemid=history_log.itemid)
JOIN hosts ON (hosts.hostid=items.hostid)
WHERE clock > UNIX_TIMESTAMP(NOW() - INTERVAL 30 MINUTE)
GROUP BY hosts.host,history_log.itemid
ORDER BY 6 DESC
LIMIT 1\G

Possible tables to analyze history_text, history_log, history_str



SEE DATA, POSSIBLY DELETE

SELECT value FROM history_log WHERE itemid=123780 LIMIT 1\G

SET SESSION SQL_LOG_BIN=0; DELETE FROM FROM history_log WHERE itemid=123780;



BIGGEST DATA PER HOST PER ONE DATA TYPE

SELECT ho.hostid, ho.name, count(*) AS records, 
(count(*)* (SELECT AVG_ROW_LENGTH FROM information_schema.tables
WHERE TABLE_NAME = 'history_text' and TABLE_SCHEMA = 'zabbix')/1024/1024) 
AS 'Total size average (Mb)', sum(length(history_text.value))/1024/1024 + 
sum(length(history_text.clock))/1024/1024 + sum(length(history_text.ns))/1024/1024 + 
sum(length(history_text.itemid))/1024/1024 AS 'history_text Column Size (Mb)'
FROM history_text
LEFT OUTER JOIN items i on history_text.itemid = i.itemid
LEFT OUTER JOIN hosts ho on i.hostid = ho.hostid
WHERE ho.status IN (0,1)
AND clock > UNIX_TIMESTAMP(now() - INTERVAL 1 DAY - INTERVAL 6 MINUTE)
AND clock < UNIX_TIMESTAMP(now() - INTERVAL 1 DAY)
GROUP BY ho.hostid ORDER BY 4 DESC LIMIT 5;

Repeat process with tables «history_log» and «history_str»



TRACK SIZE ON PARTITIONS (MYSQL)

Locate what is the data directory with command:

Most of times it prints ‘/var/lib/mysql’. In case the database name is ‘zabbix’, then we need to navigate:

cd /var/lib/mysql/zabbix
ls -lh history#*
ls -lh history_uint#*
ls -lh history_str#*
ls -lh history_text#*
ls -lh history_log#*
ls -lh trends#*
ls -lh trends_uint#*

select @@datadir;



ANALYZE A PARTITION (MYSQL)

SELECT ho.hostid, ho.name, count(*) AS records, 
(count(*)* (SELECT AVG_ROW_LENGTH FROM information_schema.tables
WHERE TABLE_NAME = 'history_log' and TABLE_SCHEMA = 'zabbix')/1024/1024) 
AS 'Total size average (Mb)', sum(length(history_log.value))/1024/1024 + 
sum(length(history_log.clock))/1024/1024 + sum(length(history_log.ns))/1024/1024 + 
sum(length(history_log.itemid))/1024/1024 AS 'history_log Column Size (Mb)'
FROM history_log PARTITION (p2021_02w)
LEFT OUTER JOIN items i on history_log.itemid = i.itemid
LEFT OUTER JOIN hosts ho on i.hostid = ho.hostid
WHERE ho.status IN (0,1)
GROUP BY ho.hostid ORDER BY 4 DESC LIMIT 10;

Repeat process with tables «history_text» and «history_str»



TO FREE UP SPACE ON MYSQL

It’s required to rebuild partitions. This can be a timeconsuming process:

If there is not enough free disk space, we can crash the DB engine.

In the background it will copy the data from one partition to new partition.

It’s a lot of I/O operations.

Execute command through the «screen» utility.

SHOW CREATE TABLE history;
ALTER TABLE history REBUILD PARTITION p202101160000;



TO FREE UP SPACE ON POSTGRES

Postgres is using autovacuum functinality. It is a separate process which cleans up dead tuples:

Query will tell how many dead tuples are in each table and when the last autovacumm has occured.

SELECT schemaname, relname, n_live_tup, n_dead_tup, last_autovacuum
FROM pg_stat_all_tables
WHERE n_dead_tup > 0
ORDER BY n_dead_tup DESC;



TO FREE UP SPACE ON POSTGRES

If vacuum has not occurred in last 10 days, it's bad:

Must change settings and increase the priority for vacuum process:

schemaname |          relname | n_live_tup | n_dead_tup |        last_autovacuum
------------+------------------------+------------+------------+-------------------------------
public     | history_uint | 1228819782 |  577423316 | 2020-08-13 04:55:11.54239-07

vacuum_cost_page_miss = 10
vacuum_cost_page_dirty = 20
autovacuum_vacuum_threshold = 50
autovacuum_vacuum_scale_factor = 0.01
autovacuum_vacuum_cost_delay = 20ms
autovacuum_vacuum_cost_limit = 3000
autovacuum_max_workers = 6



LOG FILE MONITORING

Log file monitoring has been confired per application.

However, when an application (JMX) encounters an error, it generetes a lot of long lines per second.

Solution: use ‘log.count’ instead of log item and seek the occuracne of patterns.



ZABBIX RAW ITEMS

‘Zabbix raw items’ works in tandem with dependable items.

A good template solution will use «a master item» and multiple «dependable items».

By default, a master item must have a historical period 0.

Sometimes for troubleshoting purpose we enable «History» for «Zabbix raw items».

It will put an unnecessary content in database
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