
WHAT TAKES

DISK SPACE

AIGARS KADIKIS
TECHNICAL SUPPORT ENGINEER

WHAT TAKES DISK SPACE - AGENDA

Tables

Data types

Items

Hosts

Tips

BIGGEST TABLES

history

history_uint

history_str

history_text

history_log

events

MASURE SIZE OF TABLES (MYSQL)

SELECT table_name,
table_rows,
data_length,
index_length,
round(((data_length + index_length) / 1024 / 1024 / 1024),2) "Size in GB"

FROM information_schema.tables
WHERE table_schema = "zabbix"
ORDER BY round(((data_length + index_length) / 1024 / 1024 / 1024),2) DESC
LIMIT 8;

MEASURE SIZE OF TABLES (POSTGRESQL)

In case if TimescalDB extension in place, it will tell the biggest hypertables (AKA chunks)

SELECT *, pg_size_pretty(total_bytes) AS total , pg_size_pretty(index_bytes) AS index ,
pg_size_pretty(toast_bytes) AS toast , pg_size_pretty(table_bytes) AS table

FROM (SELECT *, total_bytes-index_bytes-coalesce(toast_bytes, 0) AS table_bytes
FROM (SELECT c.oid,

nspname AS table_schema,
relname AS table_name ,
c.reltuples AS row_estimate ,
pg_total_relation_size(c.oid) AS total_bytes ,
pg_indexes_size(c.oid) AS index_bytes ,
pg_total_relation_size(reltoastrelid) AS toast_bytes

FROM pg_class c
LEFT JOIN pg_namespace n ON n.oid = c.relnamespace
WHERE relkind = 'r') a) a;

BUILD IN WAY TO TRACK INCOMING FLOW

BIGGEST DATA COMING TO INSTANCE RIGHT NOW

SELECT hosts.host,items.itemid,items.key_,
COUNT(history_log.itemid) AS 'count', AVG(LENGTH(history_log.value)) AS 'avg size',
(COUNT(history_log.itemid) * AVG(LENGTH(history_log.value))) AS 'Count x AVG'
FROM history_log
JOIN items ON (items.itemid=history_log.itemid)
JOIN hosts ON (hosts.hostid=items.hostid)
WHERE clock > UNIX_TIMESTAMP(NOW() - INTERVAL 30 MINUTE)
GROUP BY hosts.host,history_log.itemid
ORDER BY 6 DESC
LIMIT 1\G

Possible tables to analyze history_text, history_log, history_str

SEE DATA, POSSIBLY DELETE

SELECT value FROM history_log WHERE itemid=123780 LIMIT 1\G

SET SESSION SQL_LOG_BIN=0; DELETE FROM FROM history_log WHERE itemid=123780;

BIGGEST DATA PER HOST PER ONE DATA TYPE

SELECT ho.hostid, ho.name, count(*) AS records,
(count(*)* (SELECT AVG_ROW_LENGTH FROM information_schema.tables
WHERE TABLE_NAME = 'history_text' and TABLE_SCHEMA = 'zabbix')/1024/1024)
AS 'Total size average (Mb)', sum(length(history_text.value))/1024/1024 +
sum(length(history_text.clock))/1024/1024 + sum(length(history_text.ns))/1024/1024 +
sum(length(history_text.itemid))/1024/1024 AS 'history_text Column Size (Mb)'
FROM history_text
LEFT OUTER JOIN items i on history_text.itemid = i.itemid
LEFT OUTER JOIN hosts ho on i.hostid = ho.hostid
WHERE ho.status IN (0,1)
AND clock > UNIX_TIMESTAMP(now() - INTERVAL 1 DAY - INTERVAL 6 MINUTE)
AND clock < UNIX_TIMESTAMP(now() - INTERVAL 1 DAY)
GROUP BY ho.hostid ORDER BY 4 DESC LIMIT 5;

Repeat process with tables «history_log» and «history_str»

TRACK SIZE ON PARTITIONS (MYSQL)

Locate what is the data directory with command:

Most of times it prints ‘/var/lib/mysql’. In case the database name is ‘zabbix’, then we need to navigate:

cd /var/lib/mysql/zabbix
ls -lh history#*
ls -lh history_uint#*
ls -lh history_str#*
ls -lh history_text#*
ls -lh history_log#*
ls -lh trends#*
ls -lh trends_uint#*

select @@datadir;

ANALYZE A PARTITION (MYSQL)

SELECT ho.hostid, ho.name, count(*) AS records,
(count(*)* (SELECT AVG_ROW_LENGTH FROM information_schema.tables
WHERE TABLE_NAME = 'history_log' and TABLE_SCHEMA = 'zabbix')/1024/1024)
AS 'Total size average (Mb)', sum(length(history_log.value))/1024/1024 +
sum(length(history_log.clock))/1024/1024 + sum(length(history_log.ns))/1024/1024 +
sum(length(history_log.itemid))/1024/1024 AS 'history_log Column Size (Mb)'
FROM history_log PARTITION (p2021_02w)
LEFT OUTER JOIN items i on history_log.itemid = i.itemid
LEFT OUTER JOIN hosts ho on i.hostid = ho.hostid
WHERE ho.status IN (0,1)
GROUP BY ho.hostid ORDER BY 4 DESC LIMIT 10;

Repeat process with tables «history_text» and «history_str»

TO FREE UP SPACE ON MYSQL

It’s required to rebuild partitions. This can be a timeconsuming process:

If there is not enough free disk space, we can crash the DB engine.

In the background it will copy the data from one partition to new partition.

It’s a lot of I/O operations.

Execute command through the «screen» utility.

SHOW CREATE TABLE history;
ALTER TABLE history REBUILD PARTITION p202101160000;

TO FREE UP SPACE ON POSTGRES

Postgres is using autovacuum functinality. It is a separate process which cleans up dead tuples:

Query will tell how many dead tuples are in each table and when the last autovacumm has occured.

SELECT schemaname, relname, n_live_tup, n_dead_tup, last_autovacuum
FROM pg_stat_all_tables
WHERE n_dead_tup > 0
ORDER BY n_dead_tup DESC;

TO FREE UP SPACE ON POSTGRES

If vacuum has not occurred in last 10 days, it's bad:

Must change settings and increase the priority for vacuum process:

schemaname | relname | n_live_tup | n_dead_tup | last_autovacuum
------------+------------------------+------------+------------+-------------------------------
public | history_uint | 1228819782 | 577423316 | 2020-08-13 04:55:11.54239-07

vacuum_cost_page_miss = 10
vacuum_cost_page_dirty = 20
autovacuum_vacuum_threshold = 50
autovacuum_vacuum_scale_factor = 0.01
autovacuum_vacuum_cost_delay = 20ms
autovacuum_vacuum_cost_limit = 3000
autovacuum_max_workers = 6

LOG FILE MONITORING

Log file monitoring has been confired per application.

However, when an application (JMX) encounters an error, it generetes a lot of long lines per second.

Solution: use ‘log.count’ instead of log item and seek the occuracne of patterns.

ZABBIX RAW ITEMS

‘Zabbix raw items’ works in tandem with dependable items.

A good template solution will use «a master item» and multiple «dependable items».

By default, a master item must have a historical period 0.

Sometimes for troubleshoting purpose we enable «History» for «Zabbix raw items».

It will put an unnecessary content in database

QUESTIONS?

AIGARS KADIKIS
TECHNICAL SUPPORT ENGINEER

THANK YOU!

AIGARS KADIKIS
TECHNICAL SUPPORT ENGINEER

