
WMI AND PERFORMANCE

COUNTER DISCOVERY

AND MONITORING

• all our microphones are muted
• ask your questions in Q&A, not in the Chat
• use Chat for discussion, networking or applause

WMI MONITORING

01

WHAT IS WMI?

Windows Management Instrumentation (WMI) is the infrastructure for data

management and operations on Windows-based operating systems which can

be used for:

Managing remote computers

Sharing management information between applications

Accessing management data from any source in a uniform manner

Monitoring Windows-based systems and networks

Monitoring activities across an enterprise network as part of a user entity

behaviour analytics (UEBA) system

Monitoring anomalous events and potentially suspicious behaviours, and

checking for insider threats

3

HOW TO RUN WMI QUERIES?

There are multiple ways to run WMI queries in Windows:

Using WMIC (deprecated in newer Windows versions)

Using Windows PowerShell

Execute WMI based scripts

Using Zabbix Agent

4

5

WMI QUERY EXAMPLES

Before starting monitoring the output of the WMI queries, it is always a good idea to test them, WMI
queries in Zabbix are executed using Windows Management Instrumentation Query Language (WQL) :

So, syntax will be different, using WMIC i.e., to get information about installed software:

Unlike using PowerShell to get all avaiable information on running process (the WQL approach):

How to find all useful tables in Windows with information?

Get-WmiObject -query "SELECT * FROM Win32_Process"

wmic:root\cli>product where "name like 'Zabbix%'" get name, version

Get-WmiObject -query "Select * From Meta_Class"

6

OUTPUT EXAMPLES

Name : WebexHost.exe
KernelModeTime : 1562500
UserModeTime : 625000
ProcessID : 15792
WorkingSetSize : 22212608
PageFileUsage : 11200
PageFaults : 11861

Name : chrome.exe
KernelModeTime : 557656250
UserModeTime : 766250000
ProcessID : 31796
WorkingSetSize : 269451264
PageFileUsage : 165088
PageFaults : 1386269

RefreshRateService ASUSTeK COMPUTER INC. 2.1.0
Orca Microsoft Corporation 3.1.3790.0000
Microsoft Visual C++ 2012 x86 Additional Runtime - 11.0.61030 Microsoft Corporation 11.0.61030
Microsoft Visual C++ 2012 x64 Minimum Runtime - 11.0.61030 Microsoft Corporation 11.0.61030
paint.net dotPDN LLC 4.3.7
Microsoft Update Health Tools Microsoft Corporation 4.66.0.0
ASUS AURA Headset Component ASUSTek COMPUTER INC. 1.3.26.0
Microsoft Visual C++ 2013 x86 Additional Runtime - 12.0.40664 Microsoft Corporation 12.0.40664
Microsoft Visual C++ 2012 x86 Minimum Runtime - 11.0.61030 Microsoft Corporation 11.0.61030
Windows PC Health Check Microsoft Corporation 3.2.2110.14001

USING ZABBIX AGENT TO
MONITOR WMI OUTPUT

02

HOW TO RUN WMI QUERIES IN ZABBIX?

We can use built-in agent keys to execute WMI queries:

wmi.get[<namespace>,<query>]

Execute WMI query and return the first selected object.

namespace - WMI namespace

query - WMI query returning a single object

8

Get-WmiObject -query "Select Version From Win32_Product where Name like 'Office%'"

9

USING THE WMI.GET

To start using WMI monitoring in Zabbix you need to

Install Zabbix agent on the Windows machine

Configure it for passive or active checks

Create an wmi.get item to collect the data

USING THE WMI.GETALL TO GET MORE DATA

We can use built-in agent keys to execute WMI queries not only to return single

point of data, but to retrieve all information available:

wmi.getall[<namespace>,<query>]

Execute WMI query and return everything.

namespace - WMI namespace

query - WMI query

In this case the query will result into a JSON array

10

Get-WmiObject -query "SELECT * FROM Win32_Process"

{"Handle": "25056", "Name": "Teams.exe"},
{"Handle": "17720", "Name": "AutoConnectHelper.exe"},
{"Handle": "15792", "Name": "WebexHost.exe"},
{"Handle": "17796", "Name": "atmgr.exe"},
{"Handle": "31796", "Name": "chrome.exe"},

11

USING THE WMI.GETALL TO DISCOVER

To start using WMI monitoring as discovery, you will need a Zabbix agent just as with wmi.get

First thing you will need to do is create an item, to return information you are interested in. In this

example those are names of all running processes:

12

USING THE WMI.GETALL TO DISCOVER

This will give us output like this, which we can use to build a dependent discovery rule:

[
{
"Handle": "0",
"Name": "System Idle Process"

},
{
"Handle": "4",
"Name": "System"

},
{
"Handle": "1204",
"Name": "csrss.exe"

},
{
"Handle": "1352",
"Name": "wininit.exe"

},

13

USING THE WMI.GETALL TO DISCOVER

From the previous item, we create the dependent discovery rule, which with the help of LLD macro allows

us to easily extract process name to use in item prototypes:

14

USING THE WMI.GETALL TO DISCOVER

And for the item prototype, we now can use proc_info[process,<attribute>,<type>] key with our LLD macro

to monitor memory usage (and a lot more) of all the currently running processes in Windows:

15

USING THE WMI.GETALL TO DISCOVER

And this allows us to monitor all the processes memory usage in mere seconds:

PERFORMANCE COUNTER
DISCOVERY AND MONITORING

03

WHAT ARE PERFORMANCE COUNTERS?

Windows Performance Counters provide a high-level abstraction layer that

provides a consistent interface for collecting various kinds of system data:

CPU, memory, and disk usage

Overall system performance

Behaviour problems

Resource usage of programs

17

PERFORMANCE COUNTER MONITORING

We can use built-in agent keys to gather information from performance

counters:

perf_counter[counter,<interval>]

perf_counter_en[counter,<interval>] - performance counter in English

counter - path to the counter

interval - last N seconds for storing the average value

In order to get a full list of performance counters available for monitoring,

you may run:

Or use performance monitor as mentioned previously

18

typeperf -qx

19

MONITORING PERFORMANCE COUNTERS

To monitor performance counter in Zabbix, you will need a Zabbix agent

First thing you will need to do is find the performance counter you are interested in using Parformance

Monitor or CMD, let’s say we want to monitor Terminal sessions:

20

MONITORING PERFORMANCE COUNTERS

Now the found the counter, we just add it to Zabbix using the perf_counter keys:

DISCOVERING COUNTER INSTANCES

Performance counter instance is an entity about which performance data is

reported. An instance has a name (string) and one or more counter values :

21

PERFORMANCE COUNTER MONITORING

It’s possible to discover object instances of Windows performance counters:

perf_instance.discovery[object]

perf_instance_en.discovery[object] - in English

object – name of the object

Meaning the using the key perf_instance.discovery[Processor], will give us

output like:

22

[{ "{#INSTANCE}": "0" },
{ "{#INSTANCE}": "1" },
{ "{#INSTANCE}": "2" },
{ "{#INSTANCE}": "3" },
{ "{#INSTANCE}": "4" },
{ "{#INSTANCE}": "5" },
{ "{#INSTANCE}": "6" },
{ "{#INSTANCE}": "7" },
{ "{#INSTANCE}": "8" },
{ "{#INSTANCE}": "9" },
{ "{#INSTANCE}": "10" },
{ "{#INSTANCE}": "11" },
{ "{#INSTANCE}": "12" },
{ "{#INSTANCE}": "13" },
{ "{#INSTANCE}": "14" },
{ "{#INSTANCE}": "15" },
{ "{#INSTANCE}": "_Total" }]

23

PERFORMANCE COUNTER MONITORING

Meaning we can not create a discovery rule like:

24

PERFORMANCE COUNTER MONITORING

And add an item prototype to monitor how busy each CPU is with user applications based on information

from Performance Monitor:

25

PERFORMANCE COUNTER MONITORING

Which will result in monitoring each CPU business with User Applications:

Questions?

www.zabbix.com

Thank you

www.zabbix.com

