ENGLISH

ZABBIX »

FIEETUR ONLINE

WMI and Performance
counter discovery and
monitoring

Aleksandrs

Petrovs-Gavrilovs
Technical Support Engineer, Zabbix _

ZABBIX

6.0

WMI MONITORING

WHAT IS WMI?

Windows Management Instrumentation (WMI) is the infrastructure for data
management and operations on Windows-based operating systems which can

be used for:

© Managing remote computers

© Sharing management information between applications

© Accessing management data from any source in a uniform manner

© Monitoring Windows-based systems and networks

© Monitoring activities across an enterprise network as part of a user entity
behaviour analytics (UEBA) system

© Monitoring anomalous events and potentially suspicious behaviours, and

checking for insider threats

ZABBIX

6.0

ZABBIX

HOW TO RUN WMI QUERIES? 6.0

There are multiple ways to run WMI queries in Windows:
© Using WMIC (deprecated in newer Windows versions)

© Using Windows PowerShell
© Execute WMI based scripts

© Using Zabbix Agent

WMI QUERY EXAMPLES 6.0

Before starting monitoring the output of the WMI queries, it is always a good idea to test them, WMI
queries in Zabbix are executed using Windows Management Instrumentation Query Language (WQL) :

o So, syntax will be different, using WMIC i.e., to get information about installed software:

wmic:root\cli>product where "name like 'Zabbix%'" get name, version

© Unlike using PowerShell to get all avaiable information on running process (the WQL approach):

Get-WmiObject -query "SELECT * FROM Win32_Process"

© How to find all useful tables in Windows with information?

Get-WmiObject -query "Select * From Meta_Class"

OUTPUT EXAMPLES

Name

KernelModeTime :
: 625000

UserModeTime
ProcessID

WorkingSetSize :

PageFileUsage
PageFaults

Name

KernelModeTime :
: 766250000

UserModeTime
ProcessID

WorkingSetSize :

PageFileUsage

: WebexHost.exe

1562500

15792
22212608
11200
11861

chrome.exe
557656250

31796
269451264
165088

ZABBIX

6.0

PageFaults : 1386269

RefreshRateService ASUSTeK COMPUTER INC. 2.1.0

Orca Microsoft Corporation 3.1.3790.0000
Microsoft Visual C++ 2012 x86 Additional Runtime - 11.0.61030 Microsoft Corporation 11.0.61030
Microsoft Visual C++ 2012 x64 Minimum Runtime - 11.0.61030 Microsoft Corporation 11.0.61030
paint.net dotPDN LLC 4.3.7
Microsoft Update Health Tools Microsoft Corporation 4.66.0.0

ASUS AURA Headset Component ASUSTek COMPUTER INC. 1.3.26.0
Microsoft Visual C++ 2013 x86 Additional Runtime - 12.0.40664 Microsoft Corporation 12.0.40664
Microsoft Visual C++ 2012 x86 Minimum Runtime - 11.0.61030 Microsoft Corporation 11.0.61030
Windows PC Health Check Microsoft Corporation 3.2.2110.14001

ZABBIX

6.0

USING ZABBIX AGENT TO
MONITOR WMI OUTPUT

ZABBIX

HOW TO RUN WMI QUERIES IN ZABBIX? 6.0

We can use built-in agent keys to execute WMI queries:
© wmi.get[<namespace> <query>]
o Execute WMI query and return the first selected object.
o namespace - WMI namespace

o query - WMI query returning a single object

Get-WmiObject -query "Select Version From Win32 Product where Name like 'Office%'"

USING THE WMI.GET 6.0

To start using WMI monitoring in Zabbix you need to
© Install Zabbix agent on the Windows machine

ltem Tags Preprocessing

© Configure it for passive or active checks

“Name | Microsoft office version

© (Create an wmi.get item to collect the data g

*Key | miget[root\cimv2 "Select Version From Win32_Product where Name like 'Office%" Select

Type of information | Character v

* Host interface | 192 168 8 141:10050 W

* Update interval | 1m

Custom intervals Type Interval Period Action
Flexible Scheduling 50s 1-7,00:00-24:00 Remove
Add
* History storage period Do not keep history Storage period |Relt]
Value mapping | type here to search Select
Populates host inventory field | Software application A ~
Description
s
Enabled |v

ZABBIX

USING THE WMI.GETALL TO GET MORE DATA 6.0

We can use built-in agent keys to execute WMI queries not only to return single
point of data, but to retrieve all information available:

© wmi.getall[<namespace>,<query>]
o Execute WMI query and return everything.

o namespace - WMI namespace

o query - WMI query

Get-WmiObject -query "SELECT * FROM Win32 Process"

In this case the query will result into a JSON array

{"Handle": "25056", "Name": "Teams.exe"},
{"Handle": "17720", "Name": "AutoConnectHelper.exe"},

{"Handle": "15792", "Name": "WebexHost.exe"},
{"Handle": "17796", "Name": "atmgr.exe"},
{"Handle": "31796", "Name": "chrome.exe"},

USING THE WMI.GETALL TO DISCOVER 6.0

To start using WMI monitoring as discovery, you will need a Zabbix agent just as with wmi.get
© First thing you will need to do is create an item, to return information you are interested in. In this

example those are names of all running processes:

ltem Tags Preprocessing

“Name | Running processes
Type | Zabbix agent ~
*Key | wmigetall[rooticimv2 "SELECT Name FROM Win32_Process"] Select
Type of information | Text e
* Host interface | 192.168.8.141:10050 v

* Update interval | 1m

Custom intervals Type Interval Period Action
Flexible Scheduling 50s 1-7,00:00-24:00 Remove
Add

* History storage period Do not keep history Storage period
* Trend storage period Do not keep trends Storage period

Populates host inventory field | -None- A

ZABBIX

USING THE WMI.GETALL TO DISCOVER 6.0

This will give us output like this, which we can use to build a dependent discovery rule:

"Handle": "0",
"Name": "System Idle Process”

"Handle": "4",
"Name": "System"

ll: Il12@4ll)
"csrss.exe"

"Handle": "1352",
"Name": "wininit.exe"

ZABBIX]

USING THE WMI.GETALL TO DISCOVER 6.0

From the previous item, we create the dependent discovery rule, which with the help of LLD macro allows
us to easily extract process name to use in item prototypes:

Name a Triggersi
eee Running processes
Discovery rule Preprocessing Filters Overrides
RUNNING PROCESSES m—
Latest data “Name |
0 selected

Create trigger
Type @ Dependent item v
Create dependent item

| Create dependent discove Key | running.processes

T Wl ES Gl Windows device: Running processes X Select

* Keep lost resources period = 30d

Description
\
Discovery rule Preprocessing LLD macros 1 Filters ~ Overrides
LLD macros | LD macro JSONPath
{#PROC.NAME} $.Name Remove
Enabled +
Add

Update [

l Delete] i Cancel I

ZABBIX]

USING THE WMI.GETALL TO DISCOVER 6.0

And for the item prototype, we now can use proc_info[process,<attribute> <type>] key with our LLD macro
to monitor memory usage (and a lot more) of all the currently running processes in Windows:

Iltem prototype Tags Preprocessing 1

“ Name | {#PROC.NAME} memary usage
Type | Zabbix agent v
“ Key | proc_info[{#PROC.NAME}] Select
Type of information | Numeric (float) v
" Hostinterface | 192.168.8.141:10050 v
Units | B

“ Update interval | 1m

Custom intervals Type Interval e PO
Scheduling || 50s [Iltem prototype Tags Preprocessing 1
Add
Preprocessing steps Name Parameters
“ History storage period Do not keep history 90d 1- | Custom multiplier ! 1024

* Trend storage period Da not keep trends Storage period [l10) Add

Value mapping | type here to search

| Type of information | Numeric (float) v

l Clone l l Test l l Delete] l Cancel l

USING THE WMI.GETALL TO DISCOVER

And this allows us to monitor all the processes memory usage in mere seconds:

sse

see

e

sse

see

Running processes:

Running processes:

Running processes:

Running processes:

Running processes:

Running processes:

Running processes:

Running processes:

Running processes:

Running processes:

Running processes:

LightingService.exe memory usage

Lightshot.exe memory usage

LockApp.exe memory usage

Isass.exe memory usage

mcafee-security-fl.exe memory usage

mcafee-security.exe memory usage

Memory Compression memory usage

Microsoft.Photos.exe memory usage

mmc.exe memory usage

MpCopyAccelerator.exe memory usage

msedgewebview2.exe memory usage

proc_info[LightingService.exe] m 90d 365d Zabbix
agent

proc_info[Lightshot.exe] m 90d 365d Zabbix
agent

proc_info[LockApp.exe] m 90d 365d Zabbix

chrome.exe memory usage

cmd.exe memory usage

conhost.exe memory usage

Cortana.exe memory usage

CSIss.exe memory usage

ctfimon.exe memory usage

dasHost.exe memory usage

DAX3API.exe memaory usage

DClService.exe memory usage

dllhost.exe memory usage

dwm.exe memory usage

EABackgroundService.exe memory usage

explorer.exe memory usage

Enabled

Enabled

Enabled
33s

32s

49s

28s

4s

53s

57s

39s

45s

25s

10s

31s

ZABBIX

78.75 MB +993.3 KB

2.28 MB
551 MB -8.57 KB
30.64 MB

6.58 MB

4.47 MB

10.27 MB

7.93 MB +2 KB
59.7 MB -836 KB
4.99 MB
254.66 MB +1.02 MB

9.59 MB

175.03 MB

ZABBIX

6.0

PERFORMANCE COUNTER
DISCOVERY AND MONITORING

ZABBIX

WHAT ARE PERFORMANCE COUNTERS? 6.0

Windows Performance Counters provide a high-level abstraction layer that
provides a consistent interface for collecting various kinds of system data:

© CPU, memory, and disk usage
© QOverall system performance
© Behaviour problems

© Resource usage of programs

[®

() File Action View Window Help

e | rnm E=| HE

IZ%‘E‘::ZI Performance V) v| E::Il;' x J | e =] |:| | il |

v [Monitoring Tools

B& Performance Monitor
3 :'c' Data Collector Sets
> u Reports

100

o_ﬁf\hﬂ_ﬂfp\-m\/\/\’\r-__w/\/x_ﬁ__—_ﬂ_ﬁ/__h_/k/\

18:38:44 18:38:55 18:37:25 18:37:35 18:37:45 18:37:55 18:38:05 18:38:15 18:38:25 18:38:35 18:38:43
Last 4,567 Average 4,060 Minimum 1.306 Maximum 13.842 Duration 1:40
Show Color Scale Counter In

[v — 1.0 % Processor Time

ZABBIX

PERFORMANCE COUNTER MONITORING 6.0

We can use built-in agent keys to gather information from performance
counters:

© perf_counter[counter <interval>]

© perf_counter_en[counter,<interval>] - performance counter in English
o counter - path to the counter

o interval - last N seconds for storing the average value

In order to get a full list of performance counters available for monitoring,

you may run:

typeperf -gx

Or use performance monitor as mentioned previously

©

@ Performance Monitor
@ File Action View Window

o | HFE E=H
@Performance

_ B B
~ [Monitering Tools

B& Performance Monitor

Help
e

- X S| BEE R

MONITORING PERFORMANCE COUNTERS

To monitor performance counter in Zabbix, you will need a Zabbix agent

» [Data Collector Sets

dd Counters

3 :ﬁ Reports

Available counters

Select counters from computer:

\WLAPTOP-LMSTOL4Q

e

Browse...

Teredo Server

Terminal Services
Active Sessions
Inactive Sessions
Total Sessions

Terminal Services Session

Thermal Zone Information
Thread

{ 4 4

Instances of selected object:
|

Added counters

Counter

Parent Inst...

Computer

o

19:.27:03

1:40

ZABBIX]

6.0

First thing you will need to do is find the performance counter you are interested in using Parformance
Monitor or CMD, let's say we want to monitor Terminal sessions

MONITORING PERFORMANCE COUNTERS

Now the found the counter, we just add it to Zabbix using the perf_counter keys:

Item Tags 1 Preprocessing

* Name

Type

“ Key

RDP: Active Session
Zabbix agent v
perf_counter[\Terminal Services\Active Sessions] | Select |

Type of information

Numeric (unsigned) v

Units

* Update interval

Custom intervals

* History storage period ‘ Do not keep history Storage period |{l

* Trend storage period

20

60

Type Interval Period Action
Flexible Scheduling ‘ 50s 1-7,00:00-24:00 Remove

Add

‘ Do not keep trends

Storage period

ZABBIX

6.0

ZABBIX

DISCOVERING COUNTER INSTANCES 6.0

Performance counter instance is an entity about which performance data is
reported. An instance has a name (string) and one or more counter values :

Available counters Added counters
Select counters from computer:

Counter Parent Inst... Computer
|'|,'|,L.-5.F‘TOP-LMFI'DLI4Q ~| | Browse...

Process W2 A
Processor ~

% C1Time

% C2 Time

% C3 Time

% DPC Time

&% Idle Time

% Interrupt Time

Instances of selected object:

Add ==

|__| Show description QK Cancel

ZABBIX

PERFORMANCE COUNTER MONITORING 6.0

t's possible to discover object instances of Windows performance counters:
© perf_instance.discovery[object]

© perf_instance_en.discovery[object] - in English
o object - name of the object
Meaning the using the key perf_instance.discovery[Processor], will give us

output like:
"{#INSTANCE}": "0"
"{#INSTANCE}": "
"{#INSTANCE}": "2"
"{#INSTANCE}": "3"
"{#INSTANCE}": "4"
"{#INSTANCE}": "5"
"{#INSTANCE}": "6"
"{#INSTANCE}": "7"
"{#INSTANCE}": "8"
"{#INSTANCE}": "9"
"{#INSTANCE}": "
"{#INSTANCE}": "
"{#INSTANCE}": "
"{#INSTANCE}": "
"{#INSTANCE}": "
"{#INSTANCE}": "
"{#INSTANCE}": " _

Ty =L e by e B N &

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

PERFORMANCE COUNTER MONITORING

Meaning we can not create a discovery rule like:

Discovery rule Preprocessing LLD macros Filiers Overrides

* Name

Type

" Key

* Host interface
* Update interval

Custom intervals

* Keep lost resources period

Description

Enabled

Windows CPU discovery

Zabbix agent ~
perf_instance discovery[Processor]
192.168.8.141:10050 ~

1h

Type Interval

Flexible Scheduling 50s

Add

30d

v
| Test ‘ ‘ Cancel |

Period
1-7,00:00-24:00

Action

Remove

ZABBIX

PERFORMANCE COUNTER MONITORING

ZABBIX]

6.0

And add an item prototype to monitor how busy each CPU is with user applications based on information

from Performance Monitor:

Add Counters

Available counters Added counters

*

Select counters from computer:

Counter
| VLAPTOP-LMSTOU4Q -

Browse...

ltem prototype Tags

Fo L omne

% C2 Time

% C3 Time

% DPC Time

%% Idle Time

% Interrupt Time
%% Privileged Time
%o Processor Time
%o User Time

1 T i

[

Instances of selected object:

o
1
s |
11
12
13
14
15

| ~ Search

Add == Remave

[show description

—

8

Preprocessing

* Name

Type

" Key

Type of information
* Host interface
Units

* Update interval

Custom intervals

CPU#INSTANCE] User Time

Zabbix agent v
perf_counter_en["\Processor{{Z#INSTANCE})\% User Time"] Select
MNumeric (float) v

192.168.8.141:10050 v

%

1m

Interval Period Action

Type

1-7,00:00-24:00 Remove

Flexible Scheduling 50s

Add

ZABBIX

PERFORMANCE COUNTER MONITORING .

Which will result in monitoring each CPU business with User Applications:

sss Windows CPU discovery: GPUO User Time perf_counter_en["\Processor(0)\% User Time"]

«s+ Windows CPU discovery. CPU1 User Time perf_counter_en["\Processor(1)\% User Time"]

+++ Windows CPU discovery: CPUZ User Time Windows device CPUO User Time 8s 0%
+s+ Windows CPU discovery: CPU3 User Time Windows device 7s 0%
Windows device Bs 14.0504 % +14.0504 %

Windows CPU discavery:

CPU4 User Time) eeeemneRannlnn

: . : Windows device 5s 1.5647 % +1.5647 %

Windows CPU discovery: CPUS User Time

Windows device 4s 31.414 % +31.414 %
Windows CPU discovery: CPUB User Time

Windows device 3s 1.5612 % +1.5612 %
Windows CPU discovery: CPUT User Time :)

Windows device 25 0%
Windows CPU discovery: CPU8S User Time Windows device 1s 15702 % +0.007076 %
Windows CPU discovery: CPUS User Time Windows device m 15542 % +1.5542 %
Windows CPU discovery: CPU10 User Time Windows device 59s 0%

)) .)
Windows CPU discovery: CPU11 User Time AR 58s SLETEE e
: . Windows device 57s 1.6709 % +0.0101 %

Windows CPU discovery: CPU12 User Time

Windows device 565 0% -1.5643 %
Windows CPU discovery: CPU13 User Time

Windows device 555 0%
Windows CPU discovery: CPU14 User Time))

Windows device 54s 0%
Windows CPU discovery: CPU15 User Time Windows device 535 26.7157 % 52254 9%

ZABBIX

6.0
Questions?

www.zabbix.com

LS "‘
s
$3s
A
S
LUl
|
|]
HE B
%
’

A\

(1}
W

o
(/]

, W

ZABBIX

6.0
Thank you

www.zabbix.com

S
=
- wa
3=
‘\
\\\\
\
u
o
= |
HE B
’
l"’,
’
2z-
o
4
=
-2

(\}
W

o
(/]

