

MACHINE LEARNING IN ZABBIX 6.0 LTS: ANOMALY DETECTION AND BASELINES

ALEKSANDRS KALIMULINS

C Developer, Zabbix, Latvia

MODERN MONITORING CHALLENGES

- ⊘ More devices, VMs, servers and applications
- More monitored entities means more metrics
- ⊘ IT environments are changing rapidly
- ⊘ New concepts emerge frequently

MODERN MONITORING CHALLENGES

- ⊘ Less time to keep track of what is normal
- ⊘ Hard to get right signal-to-noise ratio

MACHINE LEARNING: ZABBIX APPROACH

"Field of study that gives computers the ability to learn without being explicitly programmed"

- Arthur Samuel (computer scientist, machine learning pioneer)

$\left(\right) 1$

MACHINE LEARNING: ZABBIX APPROACH

EASY AND TRANSPARENT:

WHAT IS MACHINE LEARNING?

EASY AND TRANSPARENT:

- ⊘ Simple configuration
- ⊘ Easy to understand
- ⊘ Easy to verify

Smart triggers

- Anomaly detection
 - · Analyse hystorical data
 - · Find outliers in analysis results

Smart triggers

- Anomaly detection
 - · Analyse hystorical data
 - · Find outliers in analysis results
- Baselines
 - · Calculate averages in past calendar periods
 - Find how far are current values

ANOMALY DETECTION

ANOMALY DETECTION

- Works when the majority is normal data
- Long-term analytics, works with trends
- ⊘ Zabbix uses STL decomposition

Yt = Tt + St + Rt

- 1. Apply smoothing to the original curve, get Tt
- 2. Subtract result from the original curve, split into seasons
- 3. Apply averaging to seasons, get seasonal curve St
- 4. Subtract Tt and St, get residue Rt

DEVIATIONS

- O Deviation is a measure of data variability
 - How "far" values are from average?

DEVIATIONS

- Standard and median deviations in Zabbix
 - stddevpop(), stddevsamp(), mad()
- ⊘ Also supported in anomaly function

ANOMALY DETECTION ALGORITHM

- ⊘ Get trend values for the period
- O Decompose values, get remainder
- O Calculate deviation for values in remainder
- Select values with deviations > threshold

ANOMALY DETECTION FUNCTION

trendstl(/host/key,period:time shift,detection period,season,deviations,dev algorithm)

 \otimes Returns 0 \leq number \leq 1 (ratio anomaly count / value count)

ANOMALY DETECTION FUNCTION

trendstl(/host/key,period:time shift,detection period,season,deviations,dev algorithm)

- ⊘ Parameters
 - /host/key item
 - period:time shift evaluation period (for decomposition)
 - detection period report anomalies in this period
 - season season's length for decomposition
 - deviations, dev algorithm

ANOMALY DETECTION FUNCTION

- vert trendstl(/Web/net.if.out[en0],30d:now/d,7d,12h,3,"mad") > 0.1
 - Decompose last 30 days
 - Report anomalies within last 7 days
 - Use season 12 hours
 - Count points > 3 median deviations
- ⊘ Same as:
 - trendstl(/Web/net.if.out[en0],30d:now/d,7d,12h) > 0.1

CAVEATS

trendstl()

- Long term analytics, works only with trends
- ⊘ Usable only if data has seasonality
- Season parameter is seconds

WHAT IS BASELINE?

"BASELINE IS A VALUE DERIVED FROM AN AVERAGE OVER MULTIPLE CALENDAR PERIODS OF THE SAME LENGTH"

- Zabbix (best monitoring solution)

PERIODS AND SEASONS

- Periods and seasons
- Average from past calendar periods
 - E.g., every Monday of the past 4 weeks
 - Monday is a period, week is a season
- Periods linked to current time
 - If today is Wednesday, then periods are Tuesdays

PERIODS VS SEASONS

baselinewma(/host/key,period<:time shift>,seasons)

- Returns baseline by averaging data periods in seasons
- ⊘ Uses Weighted Moving Average algorithm (WMA)

baselinewma(/host/key,period<:time shift>,seasons)

- Returns baseline by averaging data periods in seasons
- ⊘ Uses Weighted Moving Average algorithm (WMA)

baselinedev(/host/key,period<:time shift>,seasons)

- Returns number of standard deviations
- Ocompares last period to periods before within seasons

baselinedev(/host/key,period<:time shift>,seasons)

- Returns number of standard deviations
- Ocompares last period to periods before within seasons

baselinedev(/Zabbix server/system.cpu.load,1h,10d)>3

- Ocheck if load for last hour > 3 deviations away from mean
- ⊘ Use 10 one-hour periods over last 10 days

baselinewma(/Zabbix server/nginx.requests.total.rate,1d,12w)*2 <
trendavg(/Zabbix server/nginx.requests.total.rate,1d:now/d)</pre>

 Check if web traffic yesterday is > 2x higher than WMA on the same weekdays over last 12 weeks

CAVEATS

Baselines "remember" problems

- Abnormal values included in calculations
- ⊘ Time units are not interchangeable
- ⊘ 7d ≠ 1w

TECHNICAL CONSIDERATIONS

- Maintain trend storage intervals
- Set reasonable TrendCacheSize
- Set reasonable intervals for calculated items

WHAT TO CHOOSE?

- Suitable only for long term analytics
- ⊘ trendstl() heavier on resources
- Calendar periods in baselinewma/dev()
- o trendstl() works best with few anomalus points

Thank you!

www.zabbix.com