
Sergey Simonenko

Technical Support Engineer

DEFINING FLEXIBLE PROBLEM 

THRESHOLDS WITH THE NEW 

SYNTAX



NEW SYNTAX AND FUNCTIONS

ONE SYNTAX FOR EVERYTHING

01



UNIFIED SYNTAX

Calculated items and triggers share one syntax:

avg(/host/system.cpu.util,1h) – this is a calculated item

avg(/host/system.cpu.util,1h)>25 – a trigger

Most functions can be used both in calculated items and triggers

No worries: tthe conversion from the old syntax to the new one is 

performed automatically during upgrade



SMART PARAMETERS

No longer necessary to pass host and item to every function.

Only history and prediction functions require them (always as first parameter):

last(/host/item)=“success”

But: just time()>=090000 instead of old {HOST:ITEM}.now()>=090000

Note: still necessary to use at least one host/item reference in expression



TIME AND TIME SHIFT

Time and time shift parameters are now one parameter:

(sec|#num)<:time shift>

Examples:

1d:now/d Yesterday

1d:now/d+1d Today

2d:now/d+1d Last 2 days

1w:now/w Last week

1w:now/w+1w This week



NESTED FUNCTIONS

Nested functions are now possible, for example:

abs(last(/host/item))

length(find(/host/item,“pattern”))

round(max(/host/counter,1h))

Redundant functions (abschange, strlen) were removed



NEW TRIGGER FUNCTIONS

History functions – operate on historical data

Aggregate functions – allow to sum, find minimum and maximum, etc.

Operator functions – enable you to write compact and better readable 

expressions

Mathematical functions 

Date and time functions (date, now, time, etc.)



NEW TRIGGER FUNCTIONS



NEW STRING AND MATH FUNCTIONS

left, right, mid – character(s) at given position (index)

insert, replace, concat

trim, ltrim, rtrim

ascii, bitlength, bytelength

cos, sin, sqrt, log, mod, pi, rand and many more…



OPERATOR FUNCTIONS

Enable you to write expressions which are compact and better readable

Before: {HOST:ITEM.last()}>=1 and {HOST:ITEM.last()}<=10

Now:

between(last(/host/item),1,10)=1

Before: {HOST:ITEM.last()}=1 or {HOST:ITEM.last()}=2 or 

{HOST:ITEM.last()}=3…

Now:

in(last(/host/item),1,2,3,…)=1



NEW HISTORY AND AGGREGATE FUNCTIONS

monoinc, monodec – detect monotonic increase or decrease in a set of 

historical values

changecount – count the number of changes (all changes or only increases 

or decreases) between adjacent historical values

Functions to easily work with Prometheus-compatible emitters data format:

rate, bucket_percentile, histogram_quantile



ALSO

Redundant “shortcut” functions were removed for easier navigation

and to avoid confusion:

Instead of delta use:

max(/host/item, #100) - min(/host/item, #100)

Instead of diff use:

last(/host/item) != last(/host/item, #2)

Instead of prev use:

last(/host/item, #2)



AGGREGATE CALCULATIONS

REMOVING LIMITATIONS

02



AGGREGATE CALCULATIONS

Aggregate checks are now part of calculated items

Old syntax only allowed to perform aggregate calculations based on 

one host group and exact item key:

grpsum["MySQL Servers”,"vfs.fs.size[/,total]",last]

Complex filters and wildcards introduced to address this issue

This was a top-voted feature-request from Zabbix community



AGGREGATE CALCULATIONS

New syntax is not limited to a single host group for aggregate calculations, you can 

use tags, multiple hosts groups and complex and/or logical operations with 

multiple clauses.

Would like to calculate the average CPU load on a certain set of servers?

avg(last_foreach(/*/system.cpu.load?[group="Servers A" or group=“Servers B" or 

(group=“Servers C" and tag=“Importance:High")]))



AGGREGATE CALCULATIONS

New syntax supports wildcards when referencing items in aggregate calculations:

Want to calculate the total traffic consumed by a customer on multiple hosts and 

multiple network interfaces?

sum(last_foreach(/*/net.if.in[*,bytes]?[group=“Customer A”]))



Thank you!

www.zabbix.com


