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WHY PREPROCESSING?

The retrieved data is freeform and is not fit for calculations, 
aggregations and/or optimal data storage:
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WHY PREPROCESSING?

HOW CAN I SOLVE THIS?

USE PREPROCESSING!

● Text preprocessing

● Structured data

● Arithmetic

● Deltas

● Numeral systems

● Javascript

● Validation

● Prometheus Exporter 



DEEP DIVE IN
ZABBIX PRE-PROCESSING

THE EVOLUTION OF PREPROCESSING
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THE LEGACY WAY

Limited preprocessing support in versions <3.4:

● Custom multiplier
● Numeral system transformations
● Delta calculation (speed per second/simple change)

What if you needed more?

Preprocess the data by using your own scripts! 
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VERSIONS 3.4 AND 4.2

ZABBIX VERSION 3.4

Introducing - Preprocessing!

New ways to transform data:

• Regex
• Trim
• XML XPath
• JSON Path

ZABBIX VERSION 4.2

● Extended preprocessing
● Validation and throttling 
● Custom error handling
● Preprocessing support by 

Zabbix Proxy
● Prometheus exporter 

support

What has changed?
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VERSION 4.4

• Preprocessing of XML data via Xpath

• JSONPath aggregation and search

• Extended Custom error handling

• Introducing CSV to JSON preprocessing

• WMI, JMX and ODBC data collection returns JSON arrays – ready 
to preprocess via JSONPath!

What has changed?



DEEP DIVE IN
ZABBIX PRE-PROCESSING

THE MANY WAYS OF PREPROCESSING



9

TEXT PREPROCESSING

Retrieve a value by using Regex:

Temperature: 36C PCRE 36  

Trim the retrieved value and store it as a number:

36C Right Trim  36
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STRUCTURED DATA

Retrieve value from JSON or XML data:
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ARITHMETIC

Custom Multipliers to transform numeric data:

● Difference between current and previous value

● Change per second

DELTA CALCULATIONS
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INTRODUCED IN VERSION 4.2

● Custom scripts
● Validation
● Throttling
● Prometheus
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JAVASCRIPT

Implemented with Duktape JavaScript engine!

With JavaScript you can perform:

● Data transformation
● Data aggregation
● Data filtering
● Logical expressions
● etc.

...All done internally by Zabbix
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JAVASCRIPT

Convert diskstats to JSON:
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JAVASCRIPT

Preprocessed data - ready for LLD!

Initial data
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JAVASCRIPT

Result:

The items have been discovered and created by our LLD!
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VALIDATION

Validate data against validation logic:

● In range
● Matches regular expression
● Does not match regular expression
● Check for errors in JSON/XML or by using regex

CUSTOM ON FAIL
Define the behavior in cases when the preprocessing fails:

● Discard value
● Set value to
● Set error to
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VALIDATION

Discard the value outside of defined range:

Match a regular expression and set the value to Unknown if no 
match is obtained:
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VALIDATION

Check for an application-level error message located at 
JSONPath/XPath:

{ 

"Software":"Zabbix",

"Version":"4.2.0",

"OS":"CentOS 7",

"ErrorMessage":"Service Down"

}

Error message!
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THROTTLING

Enables high frequency monitoring with minimal performance 
impact:

● Discard repeating values
● Discard repeating values with a heartbeat 

Useful when we are receiving a lot of duplicate data at a very high 
frequency!

Application service monitoring:

Time: 00:00 00:02 00:04 00:06 00:08 00:10 00:12

Data: Up Down Down Up Up Up Up
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BEFORE THROTTLING
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WITH THROTTLING
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THROTTLING WITH A HEARTBEAT

History

0

1
0
0
0
0
1
1
0

Zabbix Server

0

1
0
-
-
0 (Heartbeat)
1
-
0



24

PROMETHEUS

● Query Prometheus endpoint with HTTP checks
● Use preprocessing to obtain metrics
● Use within LLD to discover components monitored by 

Prometheus

…And many more
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PROMETHEUS PATTERN

● Create master HTTP item
● Create dependent items with “Prometheus pattern”

Retrieve a metric:

Retrieve a label value:
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PROMETHEUS LLD

Create a dependent item LLD with a “Prometheus to JSON”
preprocessing step.

Discover all CPU’s:
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PROMETHEUS LLD

Retrieved JSON:
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PROMETHEUS LLD

Retrieved JSON:

Macros:{#CPUNUM}, {#MODE} 
JSONPath:$.labels.cpu, $.labels.mode

Macro:{#HELP} 
JSONPath:$.help
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PROMETHEUS LLD

Item prototype with “Prometheus pattern” preprocessing step:

node_cpu_seconds_total{cpu="{#CPUNUM}",mode="{#MODE}"}
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PROMETHEUS LLD

Use {#HELP} to populate the Description field:
Macro:{#HELP} 
JSONPath:$.help
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PROMETHEUS LLD
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PROMETHEUS LLD
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PREPROCESSING BEFORE VERSION 4.2

All of the preprocessing is being done by the server!

HistoryZabbix ServerZabbix Proxy

Preprocessed dataRaw data Compressed raw 
data
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PREPROCESSING WITH VERSION >= 4.2

Preprocessing is performed on the proxy!

HistoryZabbix ServerZabbix Proxy

Preprocessed dataRaw data Compressed 
preprocessed data



DEEP DIVE IN
ZABBIX PRE-PROCESSING

PREPROCESSING UNDER THE HOOD
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PREPROCESSING WORKFLOW

Add result to 
queue

Send value to 
worker

Enqueue item 
value

Execute 
preprocessing 
steps

Value 
stored

Data 
source

Preprocessing manager

Preprocessing worker
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PREPROCESSING MANAGER

● Added in version 3.4
● Enqueues the items in the preprocessing queue
● Assigns the preprocessing tasks to preprocessing workers
● Flushes the preprocessed values from the queue

● StartPreprocessors defines the value of pre-forked 
preprocessing workers

● Number of workers determined by:
○ Count of preprocessable items
○ Count of preprocessing steps
○ etc.

PREPROCESSING WORKERS
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LET’S RECAP

• Use master items with LLD! 

• Discover your metrics with 
preprocessing!

• Data validation!

• Custom behavior with 
advanced preprocessing 
rules!

• Discard unnecessary data with 
throttling!

• Improve performance by 
preprocessing on the proxy!

• Transform your data!

• Enable data aggregation and 
calculation with preprocessing!

Automate!

Customize! Transform!

Improve!



THANK YOU!


