
DEEP DIVE IN
ZABBIX PRE-PROCESSING

2

WHY PREPROCESSING?

The retrieved data is freeform and is not fit for calculations,
aggregations and/or optimal data storage:

3

WHY PREPROCESSING?

HOW CAN I SOLVE THIS?

USE PREPROCESSING!

● Text preprocessing

● Structured data

● Arithmetic

● Deltas

● Numeral systems

● Javascript

● Validation

● Prometheus Exporter

DEEP DIVE IN
ZABBIX PRE-PROCESSING

THE EVOLUTION OF PREPROCESSING

5

THE LEGACY WAY

Limited preprocessing support in versions <3.4:

● Custom multiplier
● Numeral system transformations
● Delta calculation (speed per second/simple change)

What if you needed more?

Preprocess the data by using your own scripts!

6

VERSIONS 3.4 AND 4.2

ZABBIX VERSION 3.4

Introducing - Preprocessing!

New ways to transform data:

• Regex
• Trim
• XML XPath
• JSON Path

ZABBIX VERSION 4.2

● Extended preprocessing
● Validation and throttling
● Custom error handling
● Preprocessing support by

Zabbix Proxy
● Prometheus exporter

support

What has changed?

7

VERSION 4.4

• Preprocessing of XML data via Xpath

• JSONPath aggregation and search

• Extended Custom error handling

• Introducing CSV to JSON preprocessing

• WMI, JMX and ODBC data collection returns JSON arrays – ready
to preprocess via JSONPath!

What has changed?

DEEP DIVE IN
ZABBIX PRE-PROCESSING

THE MANY WAYS OF PREPROCESSING

9

TEXT PREPROCESSING

Retrieve a value by using Regex:

Temperature: 36C PCRE 36

Trim the retrieved value and store it as a number:

36C Right Trim 36

10

STRUCTURED DATA

Retrieve value from JSON or XML data:

11

ARITHMETIC

Custom Multipliers to transform numeric data:

● Difference between current and previous value

● Change per second

DELTA CALCULATIONS

12

INTRODUCED IN VERSION 4.2

● Custom scripts
● Validation
● Throttling
● Prometheus

13

JAVASCRIPT

Implemented with Duktape JavaScript engine!

With JavaScript you can perform:

● Data transformation
● Data aggregation
● Data filtering
● Logical expressions
● etc.

...All done internally by Zabbix

14

JAVASCRIPT

Convert diskstats to JSON:

15

JAVASCRIPT

Preprocessed data - ready for LLD!

Initial data

16

JAVASCRIPT

Result:

The items have been discovered and created by our LLD!

17

VALIDATION

Validate data against validation logic:

● In range
● Matches regular expression
● Does not match regular expression
● Check for errors in JSON/XML or by using regex

CUSTOM ON FAIL
Define the behavior in cases when the preprocessing fails:

● Discard value
● Set value to
● Set error to

18

VALIDATION

Discard the value outside of defined range:

Match a regular expression and set the value to Unknown if no
match is obtained:

19

VALIDATION

Check for an application-level error message located at
JSONPath/XPath:

{

"Software":"Zabbix",

"Version":"4.2.0",

"OS":"CentOS 7",

"ErrorMessage":"Service Down"

}

Error message!

20

THROTTLING

Enables high frequency monitoring with minimal performance
impact:

● Discard repeating values
● Discard repeating values with a heartbeat

Useful when we are receiving a lot of duplicate data at a very high
frequency!

Application service monitoring:

Time: 00:00 00:02 00:04 00:06 00:08 00:10 00:12

Data: Up Down Down Up Up Up Up

21

BEFORE THROTTLING

History

0

1
0
0
0
0
1
1
0

Zabbix Server

0

1
0
0
0
0
1
1
0

22

WITH THROTTLING

History

0

1
0
0
0
0
1
1
0

Zabbix Server

0

1
0
-
-
-
1
-
0

23

THROTTLING WITH A HEARTBEAT

History

0

1
0
0
0
0
1
1
0

Zabbix Server

0

1
0
-
-
0 (Heartbeat)
1
-
0

24

PROMETHEUS

● Query Prometheus endpoint with HTTP checks
● Use preprocessing to obtain metrics
● Use within LLD to discover components monitored by

Prometheus

…And many more

25

PROMETHEUS PATTERN

● Create master HTTP item
● Create dependent items with “Prometheus pattern”

Retrieve a metric:

Retrieve a label value:

26

PROMETHEUS LLD

Create a dependent item LLD with a “Prometheus to JSON”
preprocessing step.

Discover all CPU’s:

27

PROMETHEUS LLD

Retrieved JSON:

28

PROMETHEUS LLD

Retrieved JSON:

Macros:{#CPUNUM}, {#MODE}
JSONPath:$.labels.cpu, $.labels.mode

Macro:{#HELP}
JSONPath:$.help

29

PROMETHEUS LLD

Item prototype with “Prometheus pattern” preprocessing step:

node_cpu_seconds_total{cpu="{#CPUNUM}",mode="{#MODE}"}

30

PROMETHEUS LLD

Use {#HELP} to populate the Description field:
Macro:{#HELP}
JSONPath:$.help

31

PROMETHEUS LLD

32

PROMETHEUS LLD

33

PREPROCESSING BEFORE VERSION 4.2

All of the preprocessing is being done by the server!

HistoryZabbix ServerZabbix Proxy

Preprocessed dataRaw data Compressed raw
data

34

PREPROCESSING WITH VERSION >= 4.2

Preprocessing is performed on the proxy!

HistoryZabbix ServerZabbix Proxy

Preprocessed dataRaw data Compressed
preprocessed data

DEEP DIVE IN
ZABBIX PRE-PROCESSING

PREPROCESSING UNDER THE HOOD

36

PREPROCESSING WORKFLOW

Add result to
queue

Send value to
worker

Enqueue item
value

Execute
preprocessing
steps

Value
stored

Data
source

Preprocessing manager

Preprocessing worker

37

PREPROCESSING MANAGER

● Added in version 3.4
● Enqueues the items in the preprocessing queue
● Assigns the preprocessing tasks to preprocessing workers
● Flushes the preprocessed values from the queue

● StartPreprocessors defines the value of pre-forked
preprocessing workers

● Number of workers determined by:
○ Count of preprocessable items
○ Count of preprocessing steps
○ etc.

PREPROCESSING WORKERS

38

LET’S RECAP

• Use master items with LLD!

• Discover your metrics with
preprocessing!

• Data validation!

• Custom behavior with
advanced preprocessing
rules!

• Discard unnecessary data with
throttling!

• Improve performance by
preprocessing on the proxy!

• Transform your data!

• Enable data aggregation and
calculation with preprocessing!

Automate!

Customize! Transform!

Improve!

THANK YOU!

