WHAT AND WHY?

ZABBIX
HA CLUSTER SETUPS
HA is a must.

but...
Keep things simple

Tested, common and time proven solution

Open source components used

True HA starts with 3
A PLAN...

Database nodes

Server nodes

Frontend nodes
A PLAN...

bare minimum

no complex automation at first

understand the basics

nodes will switch automatically if basic resources die or connectivity problems

at first: manual control/override in case of problems
A PLAN...
A PLAN...

Server nodes

- **zabbix-ha-srv1**
 - IP: 192.168.7.93
 - CPU: 0
 - RAM: 453.74 MB/991.35 MB
 - Uptime: 22:59:16
 - Status: OK

- **zabbix-ha-srv2**
 - IP: 192.168.7.94
 - CPU: 0.01
 - RAM: 412.81 MB/991.35 MB
 - Uptime: 22:59:58
 - Status: OK

- **zabbix-ha-srv3**
 - IP: 192.168.7.95
 - CPU: 0
 - RAM: 428.06 MB/991.35 MB
 - Uptime: 23:00:39
 - Status: OK

ActiveNode:
- **zabbix-ha-srv3**
 - DB VIP: 192.168.7.87
 - Uptime: 23:05:33

Message: Hostname was changed on Zabbix server VIP
DB cluster setup

- **Master**
 - node1: 192.168.7.96
 - zabbix-ha-db1
 - master

- **Active Node**
 - VIP: 192.168.7.89
 - zabbix-ha-db-app

- **Slave**
 - node2: 192.168.7.97
 - zabbix-ha-db2

 - node3: 192.168.7.98
 - zabbix-ha-db3
all cluster ip’s and hostnames

VIPs for cluster:

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Hostname</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.7.87</td>
<td>zabbix-ha-app</td>
</tr>
<tr>
<td>192.168.7.89</td>
<td>zabbix-ha-db-app</td>
</tr>
<tr>
<td>192.168.7.88</td>
<td>zabbix-ha-fe-app</td>
</tr>
</tbody>
</table>

zabbix server nodes:

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Hostname</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.7.93</td>
<td>zabbix-ha-srv1</td>
</tr>
<tr>
<td>192.168.7.94</td>
<td>zabbix-ha-srv2</td>
</tr>
<tr>
<td>192.168.7.95</td>
<td>zabbix-ha-srv3</td>
</tr>
</tbody>
</table>

IP's for nodes:

DB nodes:

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Hostname</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.7.96</td>
<td>zabbix-ha-db1</td>
</tr>
<tr>
<td>192.168.7.97</td>
<td>zabbix-ha-db2</td>
</tr>
<tr>
<td>192.168.7.99</td>
<td>zabbix-ha-db3</td>
</tr>
</tbody>
</table>

Front-end nodes:

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Hostname</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.7.90</td>
<td>zabbix-ha-fe1</td>
</tr>
<tr>
<td>192.168.7.91</td>
<td>zabbix-ha-fe2</td>
</tr>
<tr>
<td>192.168.7.92</td>
<td>zabbix-ha-fe3</td>
</tr>
</tbody>
</table>
VM preparations

- ntp (Time settings same on all nodes)
- localization
- firewall
- selinux ... :-/

/etc/hosts: don’t relay on DNS

Storage: Separate block devices for DB, logs, apps and configs)

Zabbix Agent on all nodes
DATABASE CLUSTER

ZABBIX
HA CLUSTER SETUPS
On all DB nodes:

Install HA components:
yum groupinstall 'High Availability' -y
OR:
yum groupinstall ha -y

Create user for cluster:
echo <CLUSTER_PASSWORD> | passwd --stdin hacluster
On node1: cluster setup

Authenticate cluster nodes:
pcs cluster auth zabbix-ha-db1 zabbix-ha-db2 zabbix-ha-db3 \
username: hacluster
password: <CLUSTER_PASSWORD>

zabbix-ha-db1: Authorized
zabbix-ha-db2: Authorized
zabbix-ha-db3: Authorized
On node1: cluster setup

Create zabbix-db-cluster:
pcs cluster setup --name zabbix_db_cluster \
zabbix-ha-db1 zabbix-ha-db2 zabbix-ha-db3 -force

Create resource for cluster virtual IP (VIP)
pcs resource create virtual_ip ocf:heartbeat:IPaddr2 \
ip=192.168.7.89 op monitor interval=5s --group zabbix_db_cluster
On node1: cluster setup

check:
`pcs status`

Restart cluster services in case of:
“cluster is not currently running on this node” error
`pcs cluster stop --all` & `pcs cluster start --all`

in case you have a firewalld:
`firewall-cmd --permanent --add-service=high-availability` & `firewall-cmd --reload`
On node1: cluster setup

Prevent Resources from Moving after Recovery
pcs resource defaults resource-stickiness=100

if you are not using fencing disable STONITH:
pcs property set stonith-enabled=false

otherwise resource won’t start
STONITH = Shoot the other node in the head!
Did you know there is a GUI?!
Cluster creation via pscd GUI
Cluster creation via pscd GUI

![Add Existing Cluster dialog box](image-url)

Enter the hostname/IP of a node in a cluster that you would like to manage:

Node Name/IP: zabbix-ha-db1
PCSD port: 2224

[Add Existing] [Cancel]
Cluster creation via pscd GUI

Nodes

- zabbix-ha-db1
- zabbix-ha-db2
- zabbix-ha-db3

Edit Node zabbix-ha-db1

- Pacemaker Connected
- Corosync Connected

Start Stop Restart Standby Maintenance Configure Fencing

Node ID: 1 Uptime: 0 days, 20:26:49

Red Hat Enterprise Linux7 >> High Availability Add-On Reference >> Chapter 2. The pscd Web UI
MariaDB install and replication setup

install MariaDB server on all 3 DB nodes:
yum install mariadb-server -y

tune/configure db settings:
cp ./zabbixdb.cnf /etc/my.cnf.d/

Start and enable to start on boot:
systemctl start mariadb
systemctl enable mariadb

secure your installation and create <MYSQL_ROOT_PASSWORD>:
mysql_secure_installation
MariaDB install and replication setup

cat zabbixdb.cnf

[mysqld]
ZABBIX specific settings and tuning
default-storage-engine = InnoDB
innodb = FORCE
innodb_file_per_table = 1
innodb_buffer_pool_size = 512M # 50-75% of total RAM
innodb_buffer_pool_instances = 8 # For MySQL 5.5 - 4, for 5.6+ - 8
innodb_flush_log_at_trx_commit = 2
innodb_flush_method = O_DIRECT
innodb_io_capacity = 800 # HDD disks 500-800, SSD disks - 2000
sync-binlog = 0
query-cache-size = 0
server_id = 96 # for id settings IPs last number used
report_host = zabbix-ha-db1
log-slave-updates
log_bin = /var/lib/mysql/log-bin
log_bin_index = /var/lib/mysql/log-bin.index
relay_log = /var/lib/mysql/relay-bin
relay_log_index = /var/lib/mysql/relay-bin.index
binlog_format = mixed
binlog_cache_size = 64M
max_binlog_size = 1G
expire_logs_days = 5
binlog_checksum = crc32
max_allowed_packet = 500M
MariaDB install and replication setup

Must be set on every db node accordingly

```bash
vi /etc/my.cnf.d/zabbixdb.cnf
server_id = 96
report_host = zabbix-ha-db1
```

Last number of IP
Hostname
Remember the PLAN?!
Login to MySQL:
```
mysql -uroot -p<MYSQL_ROOT_PASSWORD>
```

MariaDB [(none)]:> STOP SLAVE;
MariaDB [(none)]:> GRANT REPLICATION SLAVE ON *.* TO 'replicator'@'<NODE2_IP>' identified by '<REPLICATOR_PASSWORD>';
Query OK, 0 rows affected (0.00 sec)

MariaDB [(none)]:> SHOW MASTER STATUS

```
*************************** 1. row ***************************
File: log-bin.000001
  Position: 245
  Binlog_Do_DB: 
  Binlog_Ignore_DB: 
1 row in set (0.00 sec)
```
Replicaton setup: node2 (zabbix-ha-db2)

Login to MySQL:
```bash
code
```mysql -uroot -p<MYSQL_ROOT_PASSWORD>

STOP SLAVE;

CHANGE MASTER TO MASTER_HOST = '<NODE1_IP>', MASTER_USER = 'replicator',
MASTER_PASSWORD = '<REPLICATOR_PASSWORD>', MASTER_LOG_FILE='log-bin.000001',
MASTER_LOG_POS = 245;

GRANT REPLICATION SLAVE ON *.* TO 'replicator'@'<NODE3_IP>' identified by
'<REPLICATOR_PASSWORD>';

RESET MASTER;
START SLAVE;
SHOW SLAVE STATUS

*************************** 1. row ***************************
Slave_IO_State: Waiting for master to send event
 Master_Host: <NODE1_IP>
 Master_User: replicator
...
Master_Log_File: log-bin.000001
Read_Master_Log_Pos: 245
...
Slave_IO_Running: Yes
Slave_SQL_Running: Yes
...
Last_IO_Errno: 0
Last_IO_Error:
Replicaton setup: node2 (zabbix-ha-db2)

```
MariaDB [(none)]> SHOW MASTER STATUS\G
*************************** 1. row ***************************
    File: log-bin.000001
    Position: 245
Binlog_Do_DB: 
Binlog_Ignore_DB: 
```
Replicatation setup: node3 (zabbix-ha-db3)

Login to MySQL:
```
mysql -uroot -p<MYSQL_ROOT_PASSWORD>
```

STOP SLAVE;

```
CHANGE MASTER TO MASTER_HOST = '<NODE2_IP>', MASTER_USER = 'replicator',
MASTER_PASSWORD = '<REPLICATOR_PASSWORD>',
MASTER_LOG_FILE = 'log-bin.000001',
MASTER_LOG_POS = 245;
```

```
GRANT REPLICATION SLAVE ON .* TO 'replicator'@'<NODE1_IP>' identified by
'<REPLICATOR_PASSWORD>'; 
```

RESET MASTER;

START SLAVE;
SHOW SLAVE STATUS \G
*************************** 1. row ***************************
Slave_IO_State: Waiting for master to send event
 Master_Host: `<NODE2_IP>`
 Master_User: replicator
...
Slave_IO_Running: Yes
Slave_SQL_Running: Yes
...
Last_IO_Errno: 0
Last_IO_Error:
Replicaton setup: node3 (zabbix-ha-db3)

MariaDB [(none)]> SHOW MASTER STATUS\G
*************************** 1. row ***************************
 File: log-bin.000001
Position: 245
Binlog_Do_DB:
Binlog_Ignore_DB:

Replicaton setup: node1 (zabbix-ha-db1)

STOP SLAVE;
CHANGE MASTER TO MASTER_HOST = '<NODE3_IP>', MASTER_USER = 'replicator',
MASTER_PASSWORD = '<REPLICATOR_PASSWORD>', MASTER_LOG_FILE='log-bin.000001',
MASTER_LOG_POS = 245;
START SLAVE;
SHOW SLAVE STATUS\G
*************************** 1. row ***************************
Slave_IO_State: Waiting for master to send event
 Master_Host: <NODE3_IP>
 Master_User: replicator
...
 Last_IO_Errno: 0
 Last_IO_Error:
Prepare zabbix DB: node1 (zabbix-ha-db1)

From this point forward all MySQL queries can be executed on any node
All queries will be replicated to other nodes!
We will use `<NODE1>`, ...

Login to mysql and create zabbix db/user:
create database zabbix character set utf8 collate utf8_bin;
grant all privileges on zabbix.* to zabbix@'%'
identified by '<DB_ZABBIX_PASS>';
quit

upload db scema and basic conf:
create.sql.gz copied from main zabbix server
located in /usr/share/doc/zabbix-server-mysql-*/create.sql.gz
zcat create.sql.gz | mysql -uzabbix -p<DB_ZABBIX_PASS> zabbix
Prepare zabbix DB: node1 (zabbix-ha-db1)

And this is the moment you would setup Partitioning
But that’s the other story... :)
SO, We proceed to server setup.
Mysql replication Debug commands

SHOW BINARY LOGS;

SHOW SLAVE STATUS;

SHOW MASTER STATUS\g

RESET MASTER; "removes all binary log files that are listed in the index file, leaving only a single, empty binary log file with a numeric suffix of .000001"

RESET MASTER TO 1234; "reset to specific binary log position"

PURGE BINARY LOGS BEFORE '2019-10-11 00:20:00';
 "Numbering is not reset, may be safely used while replication slaves are running."

FLUSH BINARY LOGS; "Will reset state of binary logs and restarts numbering"
server cluster

Install HA components:
yum groupinstall ha -y

Create user for cluster:
echo zabbix123 | passwd --stdin hacluster

install zabbix server:
yum install -y zabbix-server

DON’T START OR ENABLE – that will be managed by HA components
server cluster

Copy default zabbix_server.conf file:
```bash
cp zabbix_server.conf /etc/zabbix/zabbix_server.conf
```

and modify accordingly
```bash
vi zabbix_server.conf
```

```bash
SourceIP=192.168.7.87  # VIP for zabbix-server cluster
```

```bash
DBHost=192.168.7.89   # VIP of the DB's
DBName=zabbix
DBUser=zabbix
DBPassword=<DB_ZABBIX_PASS>
```

Deploy to all server nodes
Authentificate cluster nodes:
```
pcs cluster auth zabbix-ha-db1 zabbix-ha-db2 zabbix-ha-db3
username: hacluster
password: <CLUSTER_PASSWORD>
```

Create zabbix_server_cluster:
```
pcs cluster setup --name zabbix_server_cluster \
zabbix-ha-srv1 zabbix-ha-srv2 zabbix-ha-srv3 --force
```

Disable fencing as for now we will not use it:
```
pcs property set stonith-enabled=false
```

Restart:
```
pcs cluster stop --all && pcs cluster start --all
```
server cluster: resources

Prevent Resources from Moving after Recovery
pcs resource defaults resource-stickiness=100

VIP for zabbix server app:
pcs resource create virtual_ip_server ocf:heartbeat:IPaddr2 ip=192.168.7.87 op monitor interval=5s --group zabbix_server_cluster

control zabbix-server daemon:
pcs resource create ZabbixServer systemd:zabbix-server op monitor interval=10s --group zabbix_server_cluster
server cluster: resources

Add colocation: resources must run on same node:
```bash
pcs constraint colocation add virtual_ip_server ZabbixServer INFINITY -force
```

in specific order:
```bash
pcs constraint order virtual_ip_server then ZabbixServer
```

Set start/stop timeout operations
```bash
pcs resource op add ZabbixServer start interval=0s timeout=60s
pcs resource op add ZabbixServer stop interval=0s timeout=120s
```
server cluster: check

[root@zabbix-ha-srv1 ~]# pcs status
Cluster name: zabbix_server_cluster
Stack: corosync
Current DC: zabbix-ha-srv2 (version 1.1.20-5.el7_7.1-3c4c782f70) - partition with quorum
...
3 nodes configured
2 resources configured

Online: [zabbix-ha-srv1 zabbix-ha-srv2 zabbix-ha-srv3]

Full list of resources:
 Resource Group: zabbix_server_cluster
 virtual_ip_server (ocf::heartbeat:IPaddr2): Started zabbix-ha-srv1
 ZabbixServer (systemd:zabbix-server): Started zabbix-ha-srv1
FRONTEND CLUSTER

ZABBIX
HA CLUSTER SETUPS
Install HA components:
yum groupinstall ha -y

Create user for cluster:
echo zabbix123 | passwd --stdin hacluster

install zabbix frontend:
yum install -y zabbix-web-mysql

DON’T START OR ENABLE – that will be managed by HA components
Prepare zabbix

```php
$DB['TYPE']     = 'MYSQL';
$DB['SERVER']   = '192.168.7.89';
$DB['PORT']     = '0';
$DB['DATABASE'] = 'zabbix';
$DB['USER']     = 'zabbix';
$DB['PASSWORD'] = 'zabbix123';
...
$ZBX_SERVER     = '192.168.7.87';
$ZBX_SERVER_PORT = '10051';
$ZBX_SERVER_NAME = 'ZABBIX-HA';
```

Deploy to all FE nodes on same location: /etc/zabbix/web/
Frontend cluster

create resource for apache Enable the server-status page.

```bash
vi /etc/httpd/conf.d/serverstatus.conf

Listen 127.0.0.1:8080
<VirtualHost localhost:8080>
<Location /server-status>
RewriteEngine Off
SetHandler server-status
Allow from 127.0.0.1
Order deny,allow
Deny from all
</Location>
</VirtualHost>
```
Frontend cluster

set apache to listen only on VIP

vi /etc/httpd/conf/httpd.conf +/Listen 80

change to:

...
Listen 192.168.7.88:80
...

Or...
Frontend cluster

Authenticate cluster nodes:
```bash
pcs cluster auth zabbix-he-fe1 zabbix-ha-fe2 zabbix-ha-fe3
username: hacluster
password: <CLUSTER_PASSWORD>
```

Create zabbix_frontend_cluster:
```bash
pcs cluster setup --name zabbix_fe_cluster
zabbix-ha-fe1 zabbix-ha-fe2 zabbix-ha-fe3 --force
```

Restart:
```bash
pcs cluster stop --all && pcs cluster start --all
```

Disable fencing as for now we will not use it:
```bash
pcs property set stonith-enabled=false
```
Frontend cluster: resources

VIP for FE

```bash
cpcs resource create virtual_ip_fe ocf:heartbeat:IPaddr2 ip=192.168.7.88 op monitor interval=5s --group zabbix_fe_cluster
```

for Apache:

```bash
cpcs resource create zabbix_fe ocf:heartbeat:apache \
configfile=/etc/httpd/conf/httpd.conf \
statusurl="http://localhost:8080/server-status" op \
monitor interval=30s --group zabbix_fe_cluster
```
Add colocation: resources must run on same node:
```
pcs constraint colocation add virtual_ip_fe zabbix_fe INFINITY
```

in specific order:
```
pcs constraint order virtual_ip_fe then zabbix_fe
```
```
pcs resource defaults resource-stickiness=100
```

Set start/stop timeout operations
```
pcs resource op add zabbix_fe start interval=0s timeout=60s
pcs resource op add zabbix_fe stop interval=0s timeout=120s
```
where to get more info:

google...

https://access.redhat.com/documentation/en-us/
 ## look for: Red Hat Enterprise Linux >> 7 >>
 High Availability Add-On Reference

https://clusterlabs.org/

Contact Zabbix sales :)
THANK YOU!

Edmunds Vesmanis
ZABBIX Senior Trainer

ZABBIX SUMMIT '19