Utilizing the ZBX
protocols

Who are we?

@ Administrative region

@ Prime responsibility is governing Health Care
institutions (Hospitals, various Treatment
Centers, etc)

® I work within the IT staff

Tuesday, September 3, 13

Facts

@ Population of 1.2 million citizens

@ Covering 12.200 km?2

@ 14 Hospitals, lots of smaller institutions
@ 26.000 employes

@ Using ZBX for moniforing of servers,
infrastructure and applications (network
monitoring is done by a different tool)

Tuesday, September 3, 13

Pretty Map :)

Tuesday, September 3, 13

ZBX Stats

@ ~1.700 hosts / ~1500 NVPS

@ 1 ZBX Server, 5 Proxies, 2 MySQL instances
flying of Fusion IO

® 900+ different applications

@ Win NT -> Win 2012, 4-5 different Linuxes,
AIX, Solaris

@ Every major storage vendor is represented

@ Lots of different appliance boxes

Tuesday, September 3, 13

What I want to talk
about today...

@ Background story
@ Briefly about the ZBX protocols
@ Example #1 : Windows Service restarts

@ Example #2 : Near-realtime graphing

@ Example #3 : Host interrogation

@ Example #4 : Application monitoring API

Tuesday, September 3, 13

Background Story

® We want to do stuff without having to
compromise

@ We need scalability
® We want architectural freedom

@ We want fo avoid maintenance nightmares

@ YMMV

Tuesday, September 3, 13

Briefly about the
protocols

@ Mimic the communications between ZBX
components (agent, server, proxy, java
gateway) *programatically*™

@ Multiple versions (just use the simplest
invocation and be done with it)

@ *Very* well documented on the Wiki

@ Lots of sample code on the net in different
languages (all our stuff is done in Ruby)

Tuesday, September 3, 13

Example #1 - Windows
Service restarts

@ We use the services[] item for checking
services that are set to auto start but are
not in a running state.

@ If multiple services are not running it
returns a list -- one line per service which
sc.exe cannot grok :(

@ Instead of writing a script and having to
maintain that on every host we implemented
a workaround on the server side :)

Tuesday, September 3, 13

Example #1

#!/usr/bin/env ruby
require 'socket'
require 'rubygems'’
require 'syslog'

sending commands

def send_data(service)j]
note what we did for future reference and to stdout
puts "#{@client}:system.run[\"c:\\windows\\system32\\sc.exe start #{service}\",nowait]\n"
log("#{@client}:system. run[\"c:\\windows\\system32\\sc.exe start #{service}\",nowait]\n")

open socket connection and send request

client = TCPSocket.open(@client, 10050)

client.write("system.run[\"c:\\windows\\system32\\sc.exe start #{service}\",nowait]\n")
end

syslog
def log(message)
$0 is the current script name

Syslog.open($@, Syslog::LOG_PID | Syslog::LOG_CONS) { |s| s.warning message }

end

main execution
begin
fetch arguments
@client = ARGV[0]
@services = ARGV[1].split(/\n/).reject(&:empty?)

loop over services and execute one remote command per service
@services.each do|service|

send_data(service)
end

Tuesday, September 3, 13

Example #2

@ We wanted high resolution graphs without
destroying performance

@ API call finds all groups / hosts / numerical
items and caches them in Redis

@ Graphing frontend issues AJAX requests to
our internal ZBX REST API which fetches
the data from the agent

@ Multiple graphs (add / remove) on-the-fly
for correlation are in my master branch :)

Tuesday, September 3, 13

Example #2 - continued

get '/fetch_from_agent/:hostname/:item' do

content_type :json
halt 400, "Required parameter 'item' missing " unless params[:item].size >= 4

halt 400, "Required parameter 'hostname' missing " unless params([:hostname].size >= 4

host = params[:hostname]
item = Base64.decode64(params(:item])
ap item

fetch data from agent
@data = collect_data(host,item)
ap @data

output data
erb :real_time_graf
end

Group | RSD - sQL Hotel : | HOst | srvodesqldhvOlv.rsyd.net | Item | Combined CPU Utilization in %+

Near-realtime Graph

% CPU Utilized

0
09:39:30 09:40:00 09:40:30 09:41:00 09:41:30 09:42:00 09:42:30 09:43:00 09:43:30 09:44:00

Agent Data

Tuesday, September 3, 13 12

Example #3 & #4 -
prerequisites

@ Resqueue - distributed message queue on
top of Redis

@ Supports multiple queues, builtin error
handling (failure queue) and has lots of nifty
features

® Scalable worker model

@ In short : stuff gets put into a queue and
later drained / processed by workers

Tuesday, September 3, 13

Example #3 -Host
Interrogation

® We wanted to ask your infrastructure
questions and get feedback within minutes

® We needed both predefined jobs and ad-hoc
data queries

Tuesday, September 3, 13

Example #3 - Host
Interrogation

@ Job getfs submitted via UI or script
@ Powered by a mix of items & userparams

@ API looks up the hosts in question and places
a job in the corresponding queue (one per

proxy)

@ Workers on each proxy process the queues
and submit the job output into our datastore

Tuesday, September 3, 13

Example #3 - Hos
Inferroga’rlon

Overview Working Failed Stats

Queues

The iis

Name

srvesbeappzbxprxy01.rsyd.net
srvesbeappzbxprxy02.rsyd.net
srvodeappzbxprxy01.rsyd.net
srvodeappzbxprxy02.rsyd.net
srvveseappzbxprxy01x.rsyd.net

0 of 0 Workers Workmg

I'he list below contains al workers which are currently iNg a job

Nothing is hapg

Tuesday, September 3, 13

Example #4 - App.
monitoring API

® We wanted to collect metrics from

applications (errors, response times, counters,
etc)

@ We wanted it to be versatile and easy to
consume

@ We must incur as little latency as possible to
our consumers.

® We needed it to be scalable

Tuesday, September 3, 13

Example #4 - continued

® We build an API that consumes JSON or
XML

@ Exposes 3 transport mechanisms (UDP/TCP/
HTTP)

@ UDP is perfect for metric collection

@ TCP is perfect for important signaling

@ HTTP is perfect for frontend stuff (or stuff
that cannot open socket connections)

Tuesday, September 3, 13

Example #4 - continued

@ Reusing our existing Resqueue deployment

@ Recv & send operation are disconnected
(async) so that latency / overhead are kept
at a minimum level

@ Protecting the ZBX server from abusive /
misbehaving clients (slow queue draining)

@ API implemented on every proxy to limit
exposure to network latency

Tuesday, September 3, 13

Example #4 - continued

require 'socket’

require 'json'

generate data
str = { "host" => "test-host", "key" => "test-key", "value" => "1234")}

data = JSON.generate(str)

push data
s = UDPSocket.new
s.send(data, 0, 'localhost',

s.close

require'eventmachine'’
require 'resque’
require './worker.rb'
require 'json'’

class UDPHandler < EM::Connection
handle the UDP packet
def receive_data(data)
parse the incoming JSON data
body = JSON.parse(data.to _s) # now contains a valid json object of the POST body

TODO : log errors to stdout !

munge data onto queue
Resque.enqueue(ZBXAPICall,body)
end
end

kick of reactor
M.run { EM::open_datagram socket('127.0.0.1','3000',UDPHandler) }

Tuesday, September 3, 13

Example #4 - continued

zbx_str = JSON.generate(data)

needed for ZBX sender protocol

data_length = zbx str.bytesize

data header = "Z3XD\l".encode("ascii") + \
[data_length).pack("i") + \
"\x00\x00\x00\x00"

concat data

€data_to_send = data_header + zbx_str

ap €data_to_send

open socket & push data
8 = TCPSocket.new("zbx.rsyd.net", 10051)
s.write fdata_to_send.to_s

check response

response_header = g.recv(5)

if not response_header == "ZBXD\1"
puts “"response: #{response_header}"
raise 'Got invalid response'

end

response_data_header = s.recv(8)
response_length = response_data header([0,4].unpack("1i")[0]
response_raw = s.recv(response_length)

close socket

s.close

sleep 0.5 seconds to allow the socket to close

sleep 0.5

response = JSON.load(response_raw)
ap "\n Response : #{response}\n"
end

Tuesday, September 3, 13

My ZBX wishlist

@ In-band timeout signaling
@ conditional logic in the ZBX server!

@ finish the '\@# API :)

Tuesday, September 3, 13

THANK YOU !

