

Zabbix Zero Downtime Upgrades

Case study in a highly-available

Zabbix Cluster

Background: Company

- sysfive.com GmbH:
 - Application Service Provider (Lotteries, Web Shops...)
 - Consulting Services (DevOps, Continuous Delivery...)
- Managing about a dozen platforms for various customers
- One Zabbix to rule them all!
 - Monitoring about 500 nodes
 - More than 50000 Items
 - More than 20000 Triggers
 - Strong integration in automated workflows (VM creation, deployment chains...)

Background: Zabbix

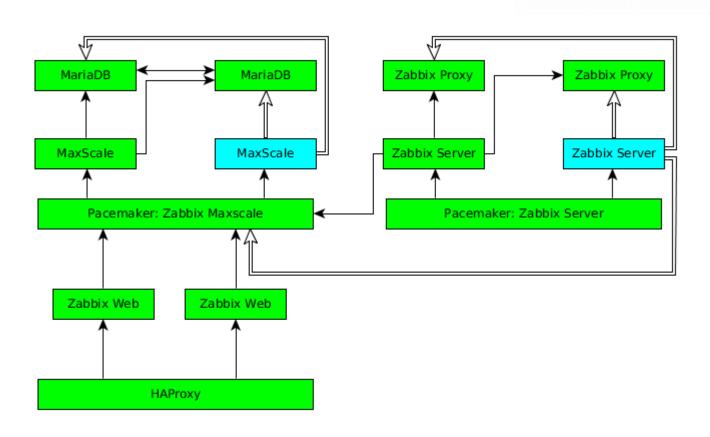
- Zabbix used for almost ten years now
- Historically grown setup
 - Running on "historic" hardware until early 2018
- 2018: Year of Upgrades (2.2 → 3.4, 3.4 → 4.0 ?)
 - Creating a completely new Zabbix infrastructure
 - Focus on High Availability
 - Plan for the next Upgrade
 - Make upgrades easy while having reliant monitoring!

Basic Thoughts I

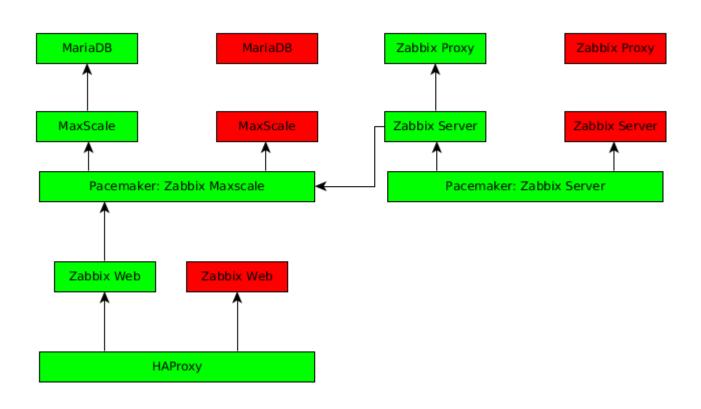
- Sysfive.com needs:
 - Distributed Monitoring Infrastructure (be save against network outages etc)
 - Centralised monitoring (one dashboard for Ops Team)
- High Availability needs:
 - Redundancy
 - Failover automatics

Basic Thoughts II

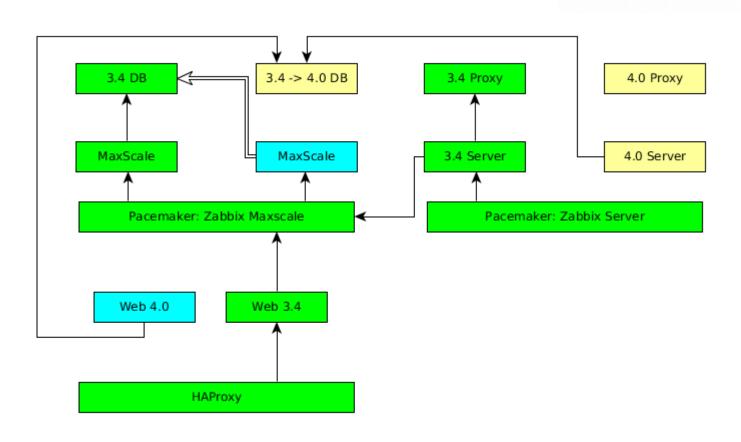
- Zero Downtime Upgrades need:
 - Creating a new instance while running the old
 - Being able to downgrade as well (just in case!)
 - Allow switching between instances of Zabbix Server/Proxy
 - Ignore agent upgrades and do that later, version mix never created problems here
- Conclusion:
 - Use the redundant infrastructure to for upgrades
 - Accepting risk time for this allows reusing the same servers


System Architecture

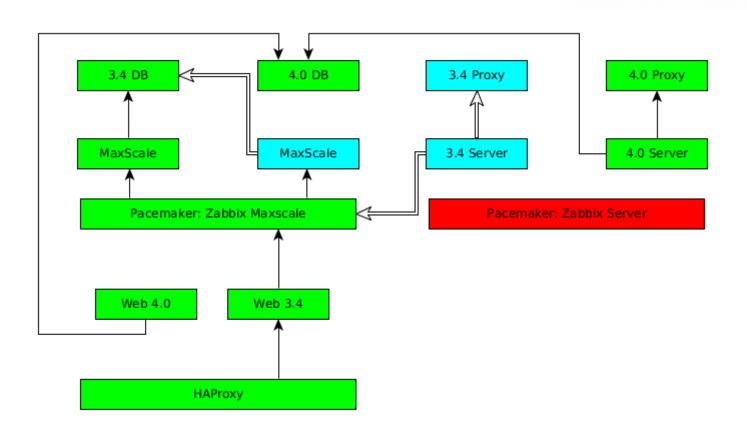
- Distribution
 - Redundant Proxies in each data center
- Failover Tools
 - → Pacemaker
 - → Ansible (not automatically triggered!)
- Load Balancing
 - → MaxScale (for MariaDB)
 - → HAProxy (for Zabbix Web/NGINX)
- DB Replication
 - → MariaDB/Galera (Master-Master Replication)


System Architecture

Redundancy


Upgrade workflow

- Split the cluster
- Upgrade one half at a time
- Smart and dynamic reconfiguration of Zabbix
- Be free which half to use (upgrade/rollback becomes a start/stop)
- Automate this!
 - Use ansible to create upgrade/rollback plays
 - Create an ansible module for dynamic proxy/host handling
 - Draft available on GitHub
 - Demonstration follows later in this talk


Upgrade Workflow

Evaluation Period

Demonstration

- Vagrant Setup:
 - 2 Servers
 - 2 Proxies
 - 4 Agents
- Ansible Showcase:
 - Move monitored hosts between proxies
 - → Demonstrating automated Ansible inventory creation
 - → Use Ansible + Zabbix API for Zabbix Server reconfiguration
 - → Use Ansible for Zabbix Agent reconfiguration
 - https://github.com/stefanheykes/zabbix-api-demo

Thank you for your attention!

Questions?